Hashing (4)
Cuckoo Hashing
Cuckoo Hashing

A simple scheme for resolving collisions in a hash table
Guaranteed constant time lookup
Expected constant time insertion
Requires stronger assumption for hash functions
We will work with Uniform Hashing Assumption
We will present a simplified version of the scheme, and a simplified analysis
We have a table $T[0..m-1]$ of m slots

Each slot is either null or contains a single data item

Data items are hashed using two hash functions:

$h_1, h_2 : \mathcal{U} \rightarrow \{0, \ldots, m-1\}$

We model each hash function as a truly random function from \mathcal{U} to $\{0, \ldots, m-1\}$

Any data item $a \in \mathcal{U}$ resides in one of two slots: either $h_1(a)$ or $h_2(a)$

Lookup procedure:

- test if $T[h_1(a)] = a$ or $T[h_2(a)] = a$

\implies guaranteed constant time lookup
Procedure to insert a new data item a

```plaintext
let $n = \#$ items already in the table
if $T[h_1(a)] = a$ or $T[h_2(a)] = a$ then
    return success  // already in table

pos ← $h_1(a)$
repeat $n$ times
    if $T[pos] = \text{null}$ then
        $T[pos] ← a$
        $T[pos] ← a$
        return success  // found an empty slot

swap $a$ and $T[pos]$

pos ← $h_1(a) + h_2(a) - pos$
// $a$’s alternate position

return failure
// need to rehash
```
The cuckoo graph:

Each slot is a vertex

Each data item \(a \) adds a random edge
\[
e = \{h_1(a), h_2(a)\}
\]
to the graph

- undirected graph
- possibly a multi-graph — repeated edges
Arrows show alternate position of each item

Insert Z at position 0: $0 \rightarrow A \rightarrow 3 \rightarrow B \rightarrow 8$

No cycle \implies no problem!

Insert Z at $h_1(Z) = 7$ ($h_2(Z) = 1$):

$7 \rightarrow W \rightarrow H \rightarrow 7 \rightarrow Z \rightarrow 1 \rightarrow C \rightarrow 2$

Insert Z at $h_1(Z) = 7$ ($h_2(Z) = 4$):

$7 \rightarrow W \rightarrow H \rightarrow 7 \rightarrow Z \rightarrow W \rightarrow H \rightarrow 4 \ldots$

only two slots for three items \implies failure
Lessons learned:

- If a new item is inserted at slot s, and there is no cycle in the graph reachable from s, then insertions will succeed.
- In particular: if there are no cycles, insertion will succeed.
- Even if there are cycles, insertion may succeed:
 - The exact characterization of failure is a bit more complicated.
Analyzing the probability of insertion failure

We will show that if \(\alpha := n/m \) (the “load factor”) is at most 1/4, then the probability that inserting \(n \) items into a table with \(m \) slots ends in failure is at most 3/4.

How? Compute bound on probability \(p \) of a cycle in a multi-graph with \(m \) vertices (slots) and \(n \) random edges (data items) \(e_1, \ldots, e_n \)

Strategy: for each \(k = 1, 2, 3, \ldots \), estimate probability \(p_k \) that graph contains a simple cycle of length \(k \)

Union bound: \(p \leq \sum_{k \geq 1} p_k \)

NOTE: a more careful analysis shows failure probability is much smaller: \(O(1/m) \)
Typical case: $p_3 :=$ probability of a 3-cycle:

\[
\begin{array}{c}
\text{s}_1 \\
\text{s}_0 \quad \text{s}_2 \\
\end{array}
\]

$\leq m^3$ ways to pick s_0, s_1, s_2, but we count the same cycle 3 times

\therefore # of 3-cycles: $\leq m^3/3$

Probability that

\[
(e_{i_1}, e_{i_2}, e_{i_3}) = (\{s_0, s_1\}, \{s_1, s_2\}, \{s_2, s_0\})
\]

is $(2/m^2)^3$

of triples i_1, i_2, i_3: $\leq n^3$

$\therefore p_3 \leq (m^3)/3 \times (2/m^2)^3 \times n^3 = (2n/m)^3/3$
The general case (exercise):

\[p_k \leq \frac{(2\alpha)^k}{k}, \quad \text{where } \alpha := \frac{n}{m} \]

Therefore,

\[p \leq \sum_{k \geq 1} p_k \leq \sum_{k=1}^{\infty} \frac{(2\alpha)^k}{k} = \ln \left(\frac{1}{1 - 2\alpha} \right) \]

Wolfram Alpha says: \(x \leq 1/2 \implies \ln(1/(1 - x)) \leq 3/4 \)

Implication:

\(\alpha \leq 1/4 \implies \text{failure probability} \leq 3/4 \)
Building a cuckoo hash table

Suppose we attempt to insert \(n \) distinct items \(a_1, \ldots, a_n \) items into an empty hash table, and stop when an insertion fails.

For \(r = 1 \ldots n \), let \(X_r \) be the number of swaps performed when we attempt to insert \(a_r \).

Note: \(X_r = 0 \) if the insertion procedure fails on one of \(a_1, \ldots, a_{r-1} \).

Assume that \(\alpha := n/m \leq 1/4 \).

Claim: \(\mathbb{E}[X_r] \leq 3/2 \).

It follows that

- Expected cost of attempting to insert \(n \) items: \(O(n) \)
- Probability that such an attempt succeeds: \(\geq 1/4 \)
- Expected number of attempts until success: \(\leq 4 \)
- Expected cost of building a table: \(O(n) \)
Claim: $E[X_r] \leq 3/2$

Proof:

Suppose the $h_1(a_r) = s_0$ and consider the cuckoo graph corresponding to items a_1, \ldots, a_{r-1}

We have

$$E[X_r] = \sum_{k=1}^{n} \Pr[X_r \geq k]$$

If $X_r \geq k$, then in the cuckoo graph: either

(i) there is a *simple path* of length k starting at s_0:

$$s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_k,$$

or

(ii) there is a *simple loop* starting at s_0:

$$s_0 \rightarrow \cdots \rightarrow s_{\ell-1} \rightarrow s_j \ (j < \ell)$$
Let’s estimate the probability \(q_k \) that there is a simple path of length \(k \) starting at \(s_0 \):

\[
 s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_k
\]

of choices for \(s_1, \ldots, s_k \): \(\leq m^k \)

Probability that

\[
 (e_{i_1}, \ldots, e_{i_k}) = (\{s_0, s_1\}, \ldots, \{s_{k-1}, s_k\})
\]

is \((2/m^2)^k \)

of tuples \(i_1, \ldots, i_k \): \(\leq n^k \)

Therefore,

\[
 q_k \leq m^k \times (2/m^2)^k \times n^k = (2n/m)^k = (2\alpha)^k
\]

\[
 \leq 2^{-k} \quad \text{(since } \alpha \leq 1/4)\]
Let’s estimate the probability \tilde{q}_ℓ that there is a simple loop of length ℓ starting at s_0

$$s_0 \rightarrow \cdots \rightarrow s_{\ell-1} \rightarrow s_j \quad (j < \ell)$$

Homework:

$$\tilde{q}_\ell \leq \frac{\ell(2\alpha)^\ell}{m}$$

Let $\tilde{q} :=$ probability of any simple loop starting at s_0:

$$\tilde{q} \leq \sum_{\ell \geq 1} \tilde{q}_\ell \leq \frac{1}{m} \sum_{\ell=1}^{\infty} \ell(2\alpha)^\ell = \frac{1}{m} \cdot \frac{2\alpha}{(1 - 2\alpha)^2} \leq \frac{2}{m} \quad (\text{since } \alpha \leq 1/4)$$
Putting it all together:

\[E[X_r] = \sum_{k=1}^{n} \Pr[X_r \geq k] \leq \sum_{k=1}^{n} (2^{-k} + 2/m) \leq 1 + \frac{2n}{m} = \frac{3}{2} \]