Hashing (3)
Perfect Hashing

We have n fixed items a_1, \ldots, a_n

We want to be able to build a table with these items, so that lookups take constant time — in the worst case

Basic strategy: universal hashing

$m = \#\text{ slots}$

We don’t want any collisions
\[\Pr[\text{collision}] \leq \sum_{i=1}^{n} \sum_{j=1}^{i-1} \Pr[h_R(a_i) = h_R(a_j)] \]

\[\leq \frac{n(n - 1)}{2m} \]

Assume \(m \geq n(n - 1) \), so that we get a collision with probability \(\leq 1/2 \)

Strategy:

repeat
 choose a random hash key
 hash \(a_1, \ldots, a_n \) using this key
until no collisions
Good news: each iteration succeeds with probability $\geq 1/2$

\therefore expected # of iterations ≤ 2

Bad news: *HUGE* table

A better approach: two levels of universal hashing

- Level 1 segregates items so that not too many go into any one slot
- Level 2 applies the basic strategy to each Level-1 slot
Suppose there are \(m \geq 2n \) Level-1 slots

Step 1:

repeat
 choose a random hash key \(R \)
 hash \(a_1, \ldots, a_n \) using \(R \)
 let \(L_s := \# \text{ items in slot } s \)
 let \(V' := \sum_s L_s(L_s - 1) = \sum_s L_s^2 - n \)
until \(V' \leq n \)

Step 2:

For each Level-1 slot \(s \), use Basic Strategy to hash all items in slot \(s \) into a hash table with (at least) \(L_s(L_s - 1) \) slots
Analysis

Tool: Markov’s inequality

let X be a random variable taking non-negative values
let $\mu := E[X]$
For all $t > 0$: $\Pr[X \geq t] \leq \mu/t$
Set $t = 2\mu$: $\Pr[X \geq 2\mu] \leq 1/2$

Step 1:

Previous lecture (Hashing (1)):
$E[V'] \leq n^2/m \leq n/2$
Markov says: $\Pr[V' \geq n] \leq 1/2$
\therefore expected # of iterations ≤ 2
Analysis (cont’d)

Step 2:

For each slot s, we build a sub-table with (at least) $L_s(L_s - 1)$ slots

∴ we can quickly find a good key for this sub-table

Summary:

• Total expected running time $= O(n)$
• Total size of data structure $= O(n)$
Another hash application: fast pattern matching

Problem: Given strings \(a = a_1 \cdots a_n \), and \(b = b_1 \cdots b_t \), test if \(b \) is a substring of \(a \)

Naive algorithm: time \(O(nt) \)

Faster algorithms: time \(O(n) \) (assume \(t \leq n \))

- A simple, randomized algorithm (Karp, Rabin)
- A trickier deterministic algorithm (Knuth, Morris, Pratt)
The Karp/Rabin Algorithm (a variant)

Let \(\{h_k\}_{k \in \mathcal{K}} \) be an \(\epsilon \)-universal family of hash functions on strings of length \(t \)

Algorithm:

- choose a random key \(k \)
- \(s \leftarrow h_k(b) \)
- for \(i \leftarrow 1 \) to \(n - t + 1 \) do
 - \(s_i \leftarrow h_k(\alpha_i \cdots \alpha_{i+t-1}) \)
 - if \(s = s_i \) then
 - if \(b = \alpha_i \cdots \alpha_{i+t-1} \) then
 - return match
 - return no match
Running time analysis: two factors

• time to compute hash function
• expected time spent processing “false positives”: $O(\epsilon \cdot n \cdot t)$

Use “polynomial evaluation” hash:

• view a_i’s, b_j’s, k as elements of \mathbb{Z}_p, where p is prime
• $h_k(a_1 \cdots a_t) = a_1 k^{t-1} + \cdots + a_t$
• $\epsilon = t/p$
• time to evaluate each h_k: $O(t)$ naively, but we can do better
Computing a “Rolling Hash”

\[a_1 k^{t-1} + a_2 k^{t-2} + \cdots + a_t \]
\[-a_1 k^{t-1} \]
\[\frac{1}{\text{uniEBE1}} \]
\[\frac{1}{\text{uniEBE1}} \]
\[a_2 k^{t-2} + \cdots + a_t \]
\[\times k \]
\[\frac{1}{\text{uniEBE1}} \]
\[\frac{1}{\text{uniEBE1}} \]
\[a_2 k^{t-1} + \cdots + a_t k \]
\[+ a_{t+1} \]
\[\frac{1}{\text{uniEBE1}} \]
\[\frac{1}{\text{uniEBE1}} \]
\[a_2 k^{t-1} + \cdots + a_t k + a_{t+1} \]
Karp/Rabin: conclusions

Assume p is near machine word size (e.g., 2^{64})
Assume arithmetic in \mathbb{Z}_p takes time $O(1)$
Time to compute hashes: $O(n)$
Expected time to process false positives: $O(nt^2/p)$, which is $O(n)$ for “reasonable” t
(e.g., $t < 2^{32}$)
Karp/Rabin: not the fastest, but for multi-pattern matching, it is very good (details: exercise)
Beyond Pairwise Independence: Uniform Hashing Assumption

let $\mathcal{H} = \{h_k\}_{k \in \mathcal{K}}$ be a family of hash functions, $h_k : \mathcal{U} \rightarrow \{0, \ldots, m - 1\}$

we want to hash data sets of size (up to) n

let R be uniformly distributed over \mathcal{K}

Uniform Hashing Assumption:

- each $h_R(a)$ is uniformly distributed over $\{0, \ldots, m - 1\}$
- the family $\{h_R(a)\}_{a \in \mathcal{U}}$ is n-wise independent
A very strong assumption
Hard to achieve in practice
Often the assumption is just heuristically applied
 “off the shelf” cryptographic functions
The Max Load — Revisited

Suppose we hash \(n \) items into \(n \) slots

Let \(M = \text{max \# of data items that hash to any one slot} \)

Theorem. Under the Uniform Hashing Assumption,

\[
E[M] = O\left(\frac{\log n}{\log \log n}\right).
\]

Note: compare to \(O(\sqrt{n}) \) for pairwise independent hashing
Recall: If X be a random variable that takes only non-negative integer values, then
\[E[X] = \sum_{j \geq 1} \Pr[X \geq j] \]

Proof of Theorem.

Claim 1: for $j = 1, \ldots, n$: $\Pr[M \geq j] \leq n/j!$

Proof: We are hashing a_1, \ldots, a_n

$M \geq j$ iff for some subset of indices $\{i_1, \ldots, i_j\}$, the items a_{i_1}, \ldots, a_{i_j} hash to the same slot

For any fixed subset, this happens with probability $1/n^{j-1}$:

- a_{i_1} can hash into any slot s
- the other $j - 1$ must hash into slot s
Summing over all subsets of size j:

$$Pr[M \geq j] \leq \binom{n}{j} \cdot \frac{1}{n^{j-1}} = \frac{n(n-1)\cdots(n-j+1)}{j!} \cdot \frac{1}{n^{j-1}} \leq \frac{n}{j!}$$

That proves the claim
Define \(f(n) := \text{least } j \text{ such that } n/j! \leq 1 \)

Claim 2: \(f(n) = O(\log n / \log \log n) \)

Sketch: we want \(\log n \leq \log j! \approx j \log j \)
This happens when \(j \) is roughly \(\log n / \log \log n \)

We have
\[
\begin{align*}
E[M] &= \sum_{j \geq 1} \Pr[M \geq j] \\
&= \sum_{j \leq f(n)} \Pr[M \geq j] + \sum_{j > f(n)} \Pr[M \geq j] \\
&\leq f(n) + \sum_{j > f(n)} \frac{n}{j!} \\
&\leq f(n) + \sum_{i \geq 1} 1/2^i \\
&= f(n) + 1 = O(\log n / \log \log n) \quad \text{QED}
\end{align*}
\]
Bloom Filters

A fixed set \(S = \{a_1, \ldots, a_n\} \subseteq \mathcal{U} \)

Data structure: an array of \(m \) bits

Use \(\ell \) hash functions \(h_1, \ldots, h_\ell \)

set bits \(h_i(a_j) \) for \(i = 1, \ldots, \ell, j = 1, \ldots, n \)

to test if \(a \in \mathcal{U} \):

 - test if bits \(h_1(a), \ldots, h_\ell(a) \) are all set

Pros: very compact (just a bit vector – no pointer, no data)

Cons: “false positives”
Analysis: $a \notin S$ is a false positive if
\[\forall i' \, \exists j, i : h_{i'}(a) = h_i(a_j) \]

For any fixed i', j, i:
\[\Pr[h_{i'}(a) = h_i(a_j)] = 1/m \]

For any fixed i':
\[\Pr \left[\forall j, i : h_{i'}(a) \neq h_i(a_j) \right] = (1 - 1/m)^{n\ell} \]

False positive rate:
\[\Pr \left[\forall i' \, \exists j, i : h_{i'}(a) = h_i(a_j) \right] = \left(1 - (1 - 1/m)^{n\ell} \right)^l \]
Use the approximation $1 + x \approx e^x$

False positive rate:

$$\left(1 - (1 - 1/m)^{nl}\right)^l \approx (1 - e^{-ln/m})^l$$

For fixed m/n, this is minimized at $l = (m/n) \ln 2$

For this l, false positive rate $\approx (0.62)^{m/n}$

Example: $m/n = 10$

<table>
<thead>
<tr>
<th>l</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.0952</td>
<td>.0329</td>
<td>.0174</td>
<td>.0118</td>
<td>.00943</td>
<td>.00844</td>
<td>.00819</td>
<td>.00846</td>
</tr>
</tbody>
</table>

We get $< 1\%$ false positive rate with 10 bits per dictionary entry
Bloom Filters: applications

Faster database lookup:
- Minimize access to large/slow memory

Distributed Web caching / P2P networks:
- Keep track of data stored at other nodes compactly using Bloom filters

Distributed set intersection:
- Avoid transmitting large data sets — send Bloom filters and compute bit-wise AND

For more applications, see

Network Applications of Bloom Filters: A Survey

Broder and Mitzenmacher