All pairs shortest paths

One approach:

- Run a single-source shortest path algorithm from each vertex

 - Bellman-Ford (no negative cycles): \(O(|V|^2(|V| + |E|))\), or \(O(|V|^4)\)
 - Dijkstra (no negative edges): \(O(|V|(|V| \log |V| + |E|))\), or \(O(|V|^3)\)

Floyd-Warshall Algorithm:

- no negative cycles
- running time \(O(|V|^3)\)
• Number the vertices 1..n
• For a path \(\rho = (v_0, v_1, \ldots, v_{k-1}, v_k) \), we say that \(v_1, \ldots, v_{k-1} \) are *intermediate* vertices
• For \(k = 0 \ldots n \), \(\delta^{(k)}(i, j) := \) length of the shortest path from \(i \) to \(j \) whose intermediate vertices belong to \(\{1, \ldots, k\} \)

\[
\delta^{(0)}(i, j) = \begin{cases}
0 & \text{if } i = j; \\
\omega(i, j) & \text{if } i \neq j \text{ and } (i, j) \in E \\
\infty & \text{otherwise}
\end{cases}
\]

• For \(k > 0 \)

\[
\delta^{(k)}(i, j) = \min \left(\delta^{(k-1)}(i, j), \delta^{(k-1)}(i, k) + \delta^{(k-1)}(k, j) \right)
\]
Straightforward implementation:

- Use a 3D array $D[i, j, k]$

\[
D[i, j, 0] \leftarrow \delta^{(0)}(i, j) \text{ for } i, j = 1 \ldots n
\]

for $k \leftarrow 1$ to n do

 for $i \leftarrow 1$ to n do

 for $j \leftarrow 1$ to n do

 $d' \leftarrow D[i, k, k - 1] + D[k, j, k - 1]$

 if $d' < D[i, j, k - 1]$

 then $D[i, j, k] \leftarrow d'$

 else $D[i, j, k] \leftarrow D[i, j, k - 1]$

- Running time: $O(n^3)$

- Space: $O(n^3)$
Improving the space requirement:

- Since $D[\cdot, \cdot, k]$ depends only on $D[\cdot, \cdot, k-1]$, we can obviously get by with just two 2D arrays.
- In fact, we can get by with just a single array, with updates “in place”.

Justification:

- $\delta^{(k)}(i, i) = 0$ for all i, k (no negative cycles)
- $\delta^{(k)}(i, k) = \min(\delta^{(k-1)}(i, k),
\quad \delta^{(k-1)}(i, k) + \delta^{(k-1)}(k, k)) = \delta^{(k-1)}(i, k)$
- $\delta^{(k)}(k, j) = \delta^{(k-1)}(k, j)$
Improved implementation:

- Use a 2D array $D[i, j]$

\[
D[i, j] \leftarrow \delta^{(0)}(i, j) \text{ for } i, j = 1 \ldots n
\]

for $k \leftarrow 1$ to n do

for $i \leftarrow 1$ to n do

for $j \leftarrow 1$ to n do

\[
d' \leftarrow D[i, k] + D[k, j]
\]

if $d' < D[i, j]$

then \quad $D[i, j] \leftarrow d'$
Adding path recovery:

- Two arrays: $D[i, j], N[i, j]$

 $D[i, j] \leftarrow \delta^{(0)}(i, j)$ for $i, j = 1 \ldots n$

 $N[i, j] \leftarrow j$ for $i, j = 1 \ldots n$

 for $k \leftarrow 1$ to n do
 for $i \leftarrow 1$ to n do
 for $j \leftarrow 1$ to n do
 $d' \leftarrow D[i, k] + D[k, j]$
 if $d' < D[i, j]$
 then $D[i, j] \leftarrow d'$
 $N[i, j] \leftarrow N[i, k]$

Printing a shortest path from u to v:

$x \leftarrow u$, print x
while $x \neq v$ do: $x \leftarrow N[x, v]$, print x
Johnson’s Algorithm

Motivation:

- For sparse graphs with no negative edges, running Dijkstra from each node is faster than Floyd-Warshall
- But what if we have a sparse graph with negative edges, and no negative cycles?

Idea:

- Convert G to a graph G' such that
 - G' has no negative edges
 - Shortest paths in G' are shortest paths in G
- How? Re-weighting
• Let $G = (V, E)$ be a directed graph with weights $w : E \to \mathbb{R}$, and no negative cycles

• Let $h : V \to \mathbb{R}$, and define
 \[\hat{w}(u, v) = w(u, v) + h(u) - h(v) \]

• For a path p in G, define $\hat{w}(p)$ to be the weight of the path, using \hat{w}

• Observation: if p is a path from u to v, then
 \[\hat{w}(p) = w(p) + h(u) - h(v) \]
 \text{(telescoping sum)}

• No negative cycles relative to \hat{w}

• Define $\hat{\delta}(u, v)$ to be the length of the shortest path from u to v, relative to \hat{w}

• Therefore, any shortest path relative to \hat{w} is also a shortest path relative to w, and
 \[\hat{\delta}(u, v) = \delta(u, v) + h(u) - h(v) \]
Johnson’s Algorithm:

- Construct a new weighted graph G' by adding a node s to G and 0-weight edges connecting s to every other vertex in G
- Run Bellman-Ford starting from s, to obtain $\delta(s, v)$ for all nodes v
- Define $h(v) := \delta(s, v)$, and re-weight as above
- By Triangle Inequality, for every edge (u, v):

 $h(v) = \delta(s, v) \leq \delta(s, u) + w(u, v) = h(u) + w(u, v)$

 and so

 $\hat{w}(u, v) = w(u, v) + h(u) - h(v) \geq 0$

- Run Dijkstra from every node, using \hat{w}
Running time:

- Bellman-Ford: $O(|V|(|V| + |E|))$
- Dijkstra: $O(|V|(|V| \log |V| + |E|))$
- Dijkstra dominates