Lower Bounds for Comparison Based Sorting and Sorting Digital Data
Lower bounds for comparison-based sorting

Consider only algorithms that make comparisons “\(a_i \leq a_j\)”

Formally: model such an algorithm as a *decision tree*:

- each internal node labeled by a pair of indices \((i, j)\), meaning compare \(a_i\) with \(a_j\)
 - two children: left branch taken if \(a_i \leq a_j\), right branch taken if \(a_i > a_j\)
- each leaf is labeled by a permutation on \(\{1, \ldots, n\}\), indicating the sorted order
- Cost = height of tree (number of levels, not counting leaves)
Example: Merge Sort on $n = 3$
Theorem. Any decision tree that correctly sorts n items must have height $\Omega(n \log n)$

Proof. All $n!$ permutations must appear as leaves. Therefore, if $h = \text{height of tree}$, then

$$2^h \geq n! \implies h \geq \log_2 n!.$$

Claim. $\log_2 n! = n \log_2 n + O(n)$

Recall: Approximating sums by integrals. If f is continuous and monotone on $[a, b]$, $m := \min(f(a), f(b))$, and $M := \max(f(a), f(b))$:

$$\int_a^b f(x)dx + m \leq \sum_{i=a}^{b} f(i) \leq \int_a^b f(x)dx + M$$
Proof of claim

We have

\[\log_2 n! = \sum_{i=1}^{n} \log_2 i \]

and

\[\int \ln(x) dx = x(\ln(x) - 1) \]

therefore

\[\int_{1}^{n} \log_2 x dx = n \log_2 n + O(n) \]

moreover

\[\int_{1}^{n} \log_2 x dx \leq \sum_{i=1}^{n} \log_2 i \leq \int_{1}^{n} \log_2 x dx + \log_2 n \]

QED
Bucket Sort (aka Counting Sort)

Let $\Delta = \{0, \ldots, m - 1\}$

input: $a_1, \ldots, a_n \in \Delta$

initialize $T[j] \leftarrow \text{“empty list”} \ (j = 0 \ldots m - 1)$

for $i \leftarrow 1$ to n do

\[T[a_i] \leftarrow T[a_i] \parallel a_i \]

output $T[0] \parallel T[1] \parallel \cdots \parallel T[m - 1]$

Running time: $O(m + n)$

Note:

• this is a “stable” sort
Lexicographic Sort (1)

input: $A_1, \ldots, A_n \in \Delta^t$

for $j \leftarrow t$ down to 1 do
 bucket sort the A_i’s using jth entry as the “sort key”

Correctness: follows from stability of Bucket Sort

Running time: $O(nt + mt)$

Improvements:

- reduce running time to $O(nt + m)$
- handle variable length inputs
Lexicographic Sort (2) – variable length inputs

Input: $A_1, \ldots, A_n \in \Delta^*$, where $t_i := |A_i| > 0$, $t_{\text{max}} := \max \{t_i\}$, $N := \sum_i t_i$

Step 1: for $j = 1 \ldots t_{\text{max}}$, create a list $L[j]$ of all A_i’s of length j

Step 2: bucket sort so that ties get broken in favor of shorter strings:

$L \leftarrow \text{empty list}$

for $j \leftarrow t_{\text{max}}$ down to 1 do

$L \leftarrow L[j] \parallel L$

bucket sort L using jth component as the “sort key”

Running time: $O(N + t_{\text{max}}m)$
Lexicographic Sort (3) – faster

Want to replace the $O(t_{\text{max}}m)$ term by $O(m)$.

- for large alphabets, this term could dominate

We spend most of our time looking at empty buckets

Visualize each A_i as a row of characters in a 2D table

For each j, we want a sorted list of the characters that appear in the jth column of the table

Idea: use bucket sort (again!)
Input: $A_1, \ldots, A_n \in \Delta^*$, where $t_i := |A_i| > 0$, $t_{\text{max}} := \max \{t_i\}$, $N := \sum_i t_i$

Step 1: for $j = 1 \ldots t_{\text{max}}$, create a list $L[j]$ of all A_i's of length j

Step 2: create a list of N pairs (j, a_{ij}), where a_{ij} is the jth component of A_i [Time = $O(N)$]

Step 3: sort pairs lexicographically — Bucket Sort twice, first in the second component (m buckets), and then in the first component (t_{max} buckets) [Time = $O(N + m)$]

The output of this step looks like:

$(1, a), (1, c), (1, c), (1, d), (2, a), (2, c), (3, b), (3, b), (3, c), \ldots$

So we can read of the information we want
Step 4: run lex sort as before, except that we use the data from step 3 to ignore empty buckets

\[L \leftarrow \text{empty list} \]
for \(j \leftarrow t_{\text{max}} \) down to 1 do
\[L \leftarrow L[j] \parallel L \]
bucket sort \(L \) using \(j \)th component as the “sort key”, ignoring empty buckets

Running Time Analysis

The running time of loop iteration \(j \) is proportional to the number of pairs \((j, a_{ij})\)

The total cost is proportional to the total number of pairs, which is \(N \)
Putting it all together: total running time is $O(N + m)$

For constant m, or $m = O(N)$, this is linear in the input size

Does not contradict the sorting lower bound