Divide and Conquer
Divide and Conquer: a (somewhat) general theorem

The setup: a recursive algorithm that on inputs of size \(n \geq n_0 \), recursively solves

- \(\leq a \) smaller sub-problems,
- each of size \(\leq n/b + c \),
- with a “local” running time \(\leq dn^e \)

where \(n_0, a, b, c, d, e \) are constants
Recursion tree analysis

At level 1, size $\leq n/b + c$

At level 2, size $\leq n/b^2 + c/b + c$

\ldots

At level j,

$$\text{size} \leq n/b^j + c/b^{j-1} + \cdots + c/b + c$$

$$\leq n/b^j + C_1,$$

where $C_1 := c/(1 - 1/b)$

At level j, there are $\leq a^j$ nodes
Set $k := \lfloor \log_b n \rfloor$, so $n \leq b^k < bn$

At level k, all sizes are $\leq 1 + C_1$, and we can ignore all nodes at levels $k + 1, k + 2, \ldots$ (their contribution to the total cost is at most a constant times the sum of costs at level k).

Let $w = \text{sum of costs at levels } 0, \ldots, k$

For each $j = 0 \ldots k$, sum of costs at level j is

\[
\leq a^j \cdot d(n/b^j + C_1)^e \\
\leq C_2 a^j (n/b^j)^e \\
= C_2 n^e (a/b^e)^j
\]
Therefore,

\[w \leq C_2 n^e \sum_{j=0}^{k} \delta^j, \]

where \(\delta := \frac{a}{b^e} \)

Case 1: \(\delta < 1 \)

\[\sum_{j=0}^{\infty} \delta^j = \frac{1}{1 - \delta} \implies w \leq \left(\frac{C_2}{1 - \delta} \right) n^e \]

Total running time = \(O(n^e) \)

Case 2: \(\delta = 1 \)

\[\sum_{j=0}^{k} \delta^j = (k + 1) \implies w \leq C_2 (k + 1) n^e \]

Total running time = \(O(n^e \log n) \)
Case 3: $\delta > 1$

$$\sum_{j=0}^{k} \delta^j = \frac{\delta^{k+1} - 1}{\delta - 1}$$

and so

$$w \leq C_3 n^e \delta^k = C_3 n^e a^k / (b^k)^e \leq C_3 a^k$$

$$\leq C_3 a^{\log_b n + 1} = C_3 a \cdot a^{\log_b n}$$

$$= C_3 a \cdot b^{\log_b a \cdot \log_b n}$$

$$= C_3 a \cdot n^{\log_b a}$$

Total running time $= O(n^{\log_b a})$
Summarizing — the “Master Theorem”

Let $f := \log_b a$

Case 1: $e > f \implies O(n^e)$

Case 2: $e = f \implies O(n^e \log n)$

Case 3: $e < f \implies O(n^f)$
Application: faster multiplication

Problem: multiply two \(n \)-bit integers

An “\(n \)-bit integer” is an integer \(a \) such that
\[0 \leq a < 2^n \]

An \(n \)-bit integer can be represented using an array of \(n \) bits (although in practice, one packs several bits into a “word”)

The sum of two \(n \)-bit integers is an \((n + 1)\)-bit integer, and can be computed in time \(O(n) \)

The product of two \(n \)-bit integers is a \((2n)\)-bit integer, and can be computed in time \(O(n^2) \)
Karatsuba’s multiplication algorithm

Input: two \(n \)-bit integers, \(a \) and \(b \)

If \(n \) is “very small”, use the naive algorithm

Otherwise, divide each number into two pieces:

\[
\begin{align*}
a &= a_1 2^k + a_0 \\
b &= b_1 2^k + b_0,
\end{align*}
\]

where \(k := \lfloor n/2 \rfloor \)

<table>
<thead>
<tr>
<th>(a)</th>
<th>(a_1)</th>
<th>(a_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>(b_1)</td>
<td>(b_0)</td>
</tr>
</tbody>
</table>
\(ab = a_1 b_1 2^{2k} + (a_1 b_0 + a_0 b_1) 2^k + a_0 b_0 \)
If we recursively compute the four sub-products $a_1 b_1, a_1 b_0, a_0 b_1, a_0 b_0$, we get another $O(n^2)$ algorithm

- $e = 1, f = \log_2 4 = 2$, Case 3 of Master Theorem

Better idea:

- Compute $A \leftarrow a_1 + a_0$, $B \leftarrow b_1 + b_0$
- Recursively compute three products:
 $H \leftarrow a_1 b_1$, $L \leftarrow a_0 b_0$, $F \leftarrow AB$
- Observe: $F = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0$
- Thus, we can compute $M \leftarrow F - (H + L)$, which is $a_1 b_0 + a_0 b_1$, and
 $P \leftarrow H2^{2k} + M2^k + L$, which is ab
Now apply Master Theorem: $e = 1$,
$f = \log_2 3 \approx 1.585$

Case 3: running time is $O(n^{\log_2 3})$

Notes:

- Not the fastest method: using the Fast Fourier Transform, one can multiply two n-bit integers in time $O(n \log n \log \log n)$
- For n (roughly) in the range 500–10,000, Karatsuba is the fastest
- You use it every time you buy something from amazon.com, or use ssh — it’s used to implement public-key cryptosystems