2-3 Trees
2-3 trees: a dictionary for general data

Assume data items are totally ordered ($<$, $>$, $=$)

Assume n items in the dictionary

Structure: a tree

- Data stored only at leaves (no duplicates)
- All leaves at the same level, in sorted order
- Each internal node:
 - has either 2 or 3 children
 - has a “guide”: the maximum data item in its subtree

Height of tree is $O(\log n)$
Example
Search(x): use guides

Insert(x): Search for x, and if it should belong under p:

add x as a child of p (if not already present)

if p now has 4 children:

• split p into two two nodes, p_1 and p_2, each with two children

• process p’s parent in the same way

• Special case: no parent — create new root, increasing height of tree by 1

Also need to update “guides” — easy

Time = O(height) = O(log n)
Case when p ends up with 4 children

p

$w \ x \ y \ z$

p

$w \ y \ z$

p_1

$w \ x$

p_2

$y \ z$
Delete(x): Search for x, and if found under p:
remove x
if p now only has one child:
 • if p is the root: delete p (height decreases by 1)
 • if one of p’s siblings has 3 children: borrow one
 • if none of p’s siblings has 3 children:
 ◦ one sibling q must have 2 children
 ◦ give p’s only child to q
 ◦ delete p
 ◦ process p’s parent
Easy case: borrow from sibling
Harder case: give away only child
2-3 trees: summary

Assume n items in dictionary

Running time for lookup, insert, delete:
 $O(\log n)$ comparisons, plus $O(\log n)$ overhead

Space: $O(n)$ pointers
Dictionaries for strings: a comparison

Hash tables or balanced trees (e.g., 2-3 trees)?

Assume n strings of length t over an m letter alphabet

Time per lookup:

- balanced trees: $O(t \log n) - O(\log n)$ comparisons, each takes time $O(t)$
- hash tables: $O(t)$ (expected)

Support for other operations:

- balanced trees support fast in-order traversal (and other things)
- hash tables: nothing
2-3 Trees: Join and Split

$\text{Join}(T_1, T_2)$ joins two 2-3 trees in time $O(\log n)$

Assume $\max(T_1) < \min(T_2)$

Assume T_i has height h_i for $i = 1, 2$

Case 1: $h_1 = h_2$
Case 2: $h_1 < h_2$

- Attach ν as the left-most child of p
- If p now has 4 children, we split p, and proceed up the tree as in Insert
- Time: $O(h_2 - h_1) = O(\log n)$

Case 3: $h_1 > h_2$ — similar
$\text{Split}(T, x) \Rightarrow (T_1 [\leq x], T_2 [> x])$
Observations:

- Initially: at most 2 trees of any given height — except there may be 3 of height 0
- Let T_1, T_2 have heights h_1, h_2, where $h_1 \geq h_2$

 Then $\text{Join}(T_1, T_2)$ takes time $O(h_1 - h_2 + 1)$, and produces a tree of height h_1 or $h_1 + 1$
- Let T_1, T_2, T_3 have heights h_1, h_2, h_3, where $h_1 = h_2 \geq h_3$

 Then $\text{Join}(T_1, \text{Join}(T_2, T_3))$ takes time $O(h_2 - h_3 + 1)$, and produces a tree of height h_1 or $h_1 + 1$
If the distinct heights of the trees to merge are
\[h_1 > h_2 > \cdots > h_k, \]
then the total cost is \(O(t) \), where
\[
t \leq (h_1 - h_2 + 1) + (h_2 - h_3 + 1) + \cdots + (h_{k-1} - h_k + 1)
\]
\[= h_1 - h_k + k - 1 \]
\[\leq 2h, \]
where \(h \) is the height of the original tree

Conclusion: total time for Split is \(O(\log n) \)
Augmenting 2-3 trees

Examples

Store # of items in subtree at each internal node

Queries:

- What is the kth smallest item?
- How many items are $\leq x$?
Items may be marked with an attribute, say, “active”/“inactive”

Store a count of active items in subtree at each internal node

Queries:

- What is the kth smallest active item?
- How many active items are $\leq x$?
• Attribute flipping . . .
• Operation $Flip(x, y)$ flips all attribute bits of items in the range
• Assume attributes are bits
• Store an XOR-bit at each internal node
 ◦ “effective” value of the attribute is the XOR of all bits on path from root to leaf
• To perform $Flip(x, y)$:
 ◦ trace paths e, f to x, y
 ◦ flip bits at $x, y,$ and all roots of “internal” subtrees
Example: