Assume you are given a data structure D which supports the following two operations:

- **INSERT(D, value).** Inserts a value $value$ into D. If D has n elements, assume this procedure takes $I(n)$ time.

- **SEARCH(D, value).** It D contains at least one element equal to $value$, return the pointer to this element (else returns nil). Assume this procedure takes $S(n)$ time.

- **INORDERWALK(D).** Outputs all n elements of D in sorted order. Assume this procedure takes linear time $O(n)$.

Using D, you would like to build a new data structure R, which can deal with many repeated elements more efficiently, by supporting the following operations.

- **ADD(R, value).** Inserts a value $value$ into R.

- **FREQUENCY(R, value).** Returns the number of elements of R equal to $value$ (i.e., how many times was ADD(R, value) called before).

- **FASTINORDERWALK(R).** Outputs all distinct elements of D in sorted order, together with their frequency values.

(a) (5 pts) Using D, show how to implement R, so that the following is true. If R contains n records, but only t of them are distinct, where t could be much less than n, then

- $ADD(R, key)$ should run in time $A(n, t) \approx I(t) + S(t)$;
- $FREQUENCY(R, key)$ should run in time $F(n, t) \approx S(t)$;
- $FASTINORDERWALK(R)$ should run in time $O(t)$.

Namely, all run times are independent of n. For example, if ADD has been called 4 times on $(R, 7)$ and 5 times on $(R, 6)$ then FREQUENCY($R, 3$) returns 0 but FREQUENCY($R, 7$) returns 4, and both calls take time $F(9, 2) \approx S(2)$, where $t = 2$ because only two distinct values were inserted so far (despite $n = 4 + 5 = 9$). Also, FASTINORDERWALK(R) will output $(6, 5), (7, 4)$ in time $O(2)$.

Hint: Add a field $v.num$ in addition to $v.key$, which counts how many elements are equal to $v.key$.

Solution: ********** INSERT YOUR SOLUTION HERE **********

(b) (5 pts) For each of the following implementations of D, compute the running times $A(n, t)$ and $F(n, t)$ of ADD and FREQUENCY that you get by using your solution from part (a). Which data structure is the best? Make sure to justify your answers.

********** INSERT YOUR NAME HERE *****, Homework 6, Problem 1, Page 1
– Implement D as a linked list.
– Implement D as a sorted array.
– Implement D as a 2-3-tree.

Solution: ***************** INSERT YOUR SOLUTION HERE *****************

(c) (5 pts) Using the best data structure developed in part (b), give an algorithm for sorting n integers with at most t distinct values in time $O(n \log t)$. Make sure you justify your running time bound.

Solution: ***************** INSERT YOUR SOLUTION HERE *****************
Assume you are given a binary search tree T of height h and with n elements in it. For simplicity, assume all the elements are distinct.

(a) (5 pts) Use a slight modification of the PostOrder-Tree-Walk procedure to argue that in time $\Theta(n)$ you can compute, for every node v, the number of even nodes (call it $even(v)$) in v’s sub-tree.

(Hint: In addition to $even(v)$, also compute the total number of nodes in v’s subtree.)

Solution: ****************** INSERT YOUR SOLUTION HERE ******************

(b) (5 pts) Now that each node v contains the value $even(v)$, show how to keep maintaining this value for each successive Insert operation. Namely, show how to perform an Insert operation in time $O(h)$, while correctly maintaining all the $even(v)$ values.

Solution: ****************** INSERT YOUR SOLUTION HERE ******************

(c)* (5 pts) (Extra Credit:) Similar to part (b), but do it for the Delete operation. Namely, show how to perform a Delete operation in time $O(h)$, while correctly maintaining all the $even(v)$ values.

Solution: ****************** INSERT YOUR SOLUTION HERE ******************
We want to build a data structure for maintaining a (potentially infinite) matrix M and support the following operations.

- **Initialize**(M): Create an empty matrix M with all zero entries.
- **Find**(M, i, j): Return the value at index i, j.
- **Update**(M, i, j, e): Change the value at index i, j to e.
- **Transpose**(M): Transpose the matrix M.
- **Add**(M): Return the sum of all entries of M.

Assume that the matrix is of arbitrary dimensions. Use 2-3 trees appropriately to obtain a data structure such that **Initialize**, **Transpose**, and **Add** run in $O(1)$ time, and **Find** and **Update** run in $O(\log k)$ time, where k is the number of non-zero entries in the matrix.

Solution: ***************** INSERT YOUR SOLUTION HERE ************

**** INSERT YOUR NAME HERE ****, Homework 6, Problem 3, Page 1
Assume that you are given a 2-3 tree T containing n distinct elements.

(a) (4 points) Show how to find the successor of a given element $x \in T$ in time $O(\log n)$.

Solution: ***************** INSERT YOUR SOLUTION HERE *****************

(b) (4 points) Show that if the input element x is chosen uniformly at random from T, then your procedure from part (a) runs in expected time $O(1)$.

Solution: ***************** INSERT YOUR SOLUTION HERE *****************

Assume that we wish to augment our 2-3 tree data structure so that each node v maintains a pointer $v.succ$ to the successor of v, so that queries for the successor of an element can be answered in $O(1)$ time worst-case.

(c) (6 points) Show that the 2-3 trees can be augmented while maintaining $v.succ$, such that the INSERT and DELETE operations can still be performed in $O(\log n)$ time. (Hint: Think of a linked list.)

Solution: ***************** INSERT YOUR SOLUTION HERE *****************

**** INSERT YOUR NAME HERE ****, Homework 6, Problem 4, Page 1