Using a min-heap in a clever way, give $O(n \log k)$-time algorithm to merge k sorted arrays $A_1 \ldots A_k$ of size n/k each into one sorted array B. Write the pseudocode of your algorithm using procedures Build-Heap, Extract-Min and Insert.

Solution: ****************** INSERT YOUR SOLUTION HERE ******************
You are given an array $A[1] \ldots A[n]$ of n “objects”. You have a magic unit-time procedure $\text{Equal}(A[i], A[j])$, which will tell if objects $A[i]$ and $A[j]$ are the same. Unfortunately, there is no other way to get any meaningful information about the objects: e.g., cannot ask if $A[i]$ is “greater” than $A[j]$ or if it is more “sexy”, etc., just the equality test. We say that A is a repetitor if it contains strictly more than $n/2$ elements which are all pairwise the same. In this case any of A’s (at least $n/2$) repetitive elements is called dull. For example, if the “object” is a string, the array $(\text{boring, funny, cute, boring, boring})$ is a repetitor where boring is dull while funny is not. On the other hand, the array $(\text{hello, hi, bonjorno, hola, whasup})$ is not a repetitor. Your goal is to determine if A is a repetitor, and, if so, output its dull “object” (which is clearly unique).

(a) (8 points) Design a simple divide-and-conquer algorithm for this problem running in time $O(n \log n)$. Make sure you argue the correctness and the running time.

(Hint: Prove that if A is a repetitor, at least one of its “halves” is as well.)

Solution: **************** INSERT YOUR SOLUTION HERE ************

(b) (4 Points) Remember, if A was an integer array, the procedure $\text{Partition}(A, p, r)$ (see Section 7.1) makes $x = A[r]$ the pivot element and returns the index q, where the new value of $A[q]$ contains the pivot x, the new values $A[p \ldots q - 1]$ contain elements less or equal to x, and the new values $A[q + 1 \ldots r]$ contain values greater than x. Write the pseudocode of the modified procedure $\text{New-Partition}(A, p, r)$, which only uses the Equal operator and returns q such that $A[q + 1 \ldots r]$ contain all the elements equal to x (while $A[p \ldots q]$ contain all other elements).

Solution: **************** INSERT YOUR SOLUTION HERE ************

(c) (2 points) Consider the following, more general, algorithm $\text{Repeat}(A, n, t)$, which tells if some element of $A[1] \ldots A[n]$ is repeated at least t times. (Clearly, Repetitor can just call Repeat with $t = n/2 + 1$.)

\begin{verbatim}
REPEAT(A, n, t)
 \textbf{If} $n < t$ \textbf{Return} no
 Pick $i \in \{1 \ldots n\}$ at random.
 \textbf{Swap}(A[i], A[n])
 $q \leftarrow \text{New-Partition}(A, 1, n)$
 \textbf{If} $n - q \geq t$ \textbf{Then Return} (yes, $A[n]$)
 \textbf{Return} REPEAT(A, q, t)
\end{verbatim}

Argue that the algorithm above is correct.
Solution: **************** INSERT YOUR SOLUTION HERE ****************

(d) (3 points) Argue that the algorithm above always terminates in time $O(n^2)$ (irrespective of the random choices of i).

Solution: **************** INSERT YOUR SOLUTION HERE ****************

(e) (3 points) Give an example of an (integer) array A and a value $t \geq 2$ where the algorithm indeed takes time $\Omega(n^2)$.

Solution: **************** INSERT YOUR SOLUTION HERE ****************

(f) (4 Points) Let $T(n)$ be the worst case (over all arrays $A[1 \ldots n]$ and $t > n/2$ such that A contains t identical elements) of the expected running time of $\text{repeat}(A, n, t)$ (over the random choice of i). For concreteness, assume new-partition takes time exactly n. Prove that

$$T(n) \leq \frac{1}{2} T(n - 1) + n$$

(Hint: Prove that in this case no recursive sub-call will be made with probability $t/n > 1/2$.)

Solution: **************** INSERT YOUR SOLUTION HERE ****************

(g) (2 points) Show by induction that $T(n) \leq 2n$.

Solution: **************** INSERT YOUR SOLUTION HERE ****************

(h*) (Extra Credit: 6 points) Consider the following test for repetitor. For 100 times, run $\text{repeat}(A, n, n/2 + 1)$ for at most $4n$ steps. If one of these 100 runs ever finishes within $4n$ steps, use that answer. If none of the 100 runs terminates within $4n$ steps, return no. Argue that the running time of this procedure is $O(n)$. Then argue that the probability it returns the incorrect no answer (when it should have returned yes) is at most 2^{-100}.

(Hint: Show that when the answer is yes, the probability of not finding this answer in $4n$ steps is at most 1/2. Google for “Markov’s inequality” if you want to be formal.)

Solution: **************** INSERT YOUR SOLUTION HERE ****************

(i**) (Extra Credit: 8 points) Try to design $O(n)$ deterministic test for a repetitor.

Solution: **************** INSERT YOUR SOLUTION HERE ****************

**** INSERT YOUR NAME HERE ****, Homework 4, Problem 2, Page 2
Assume we are given an array $A[1\ldots n]$ of n distinct integers and that $n = 2k$ is even.

(a) (4 points) Let $\text{pivot}(A)$ denote the rank of the pivot element at the end of the partition procedure, and assume that we choose a random element $A[i]$ as a pivot, so that $\text{pivot}(A) = i$ with probability $1/n$, for all i. Let $\text{smallest}(A)$ be the length of the smaller sub-array in the two recursive subcalls of the QUICKSORT. Notice, $\text{smallest}(A) = \min(\text{pivot}(A) - 1, n - \text{pivot}(A))$ and belongs to $\{0 \ldots k-1\}$, since $n = 2k$ is even. Given $0 \leq j \leq k-1$, what is the probability that $\text{smallest}(A) = j$?

Solution: ***************** INSERT YOUR SOLUTION HERE ************

(b) (3 points) Compute the expected value of $\text{smallest}(A)$; i.e., $\sum_{j=0}^{k-1} \Pr(\text{smallest}(A) = j) \cdot j$. (Hint: If you solve part (a) correctly, no big computation is needed here.)

Solution: ***************** INSERT YOUR SOLUTION HERE ************

(c) (5 points) Write a recurrence equation for the running time $T(n)$ of QUICKSORT, assuming that at every level of the recursion the corresponding sub-arrays of A are partitioned exactly in the ratio you computed in part (b). Solve the resulting recurrence equation. Is it still as good as the average case of randomized QUICKSORT?

Solution: ***************** INSERT YOUR SOLUTION HERE ************

**** INSERT YOUR NAME HERE ****, Homework 4, Problem 3, Page 1
We wish to implement a data structure D that maintains the k smallest elements of an array A. The data structure should allow the following procedures:

- $D \leftarrow \text{Initialize}(A, n, k)$ that initializes D for a given array A of n elements.
- $\text{Traverse}(D)$, that returns the k smallest elements of A in sorted order.
- $\text{Insert}(D, x)$, that updates D when an element x is inserted in the array A.

We can implement D using one of the following data structures: (i) an unsorted array of size k; (ii) a sorted array of size k; (iii) a max-heap of size k.

(a) (4 points) For each of the choices (i)-(iii), show that the \text{Initialize} procedure can be performed in time $O(n + k \log n)$.

Solution: ****************** INSERT YOUR SOLUTION HERE ******************

(b) (3 points) For each of the choices (i)-(iii), compute the best running time for the \text{Traverse} procedure you can think of. (In particular, tell your procedure.)

Solution: ****************** INSERT YOUR SOLUTION HERE ******************

(c) (5 points) For each of the choices (i)-(iii), compute the best running time for the \text{Insert} procedure you can think of. (In particular, tell your procedure.)

Solution: ****************** INSERT YOUR SOLUTION HERE ******************