Consider the problem of implementing insertion sort using a doubly-linked list instead of array. Namely, each element a of the linked list has fields $a\.previous$, $a\.next$ and $a\.value$. You are giving a stating element s of the linked list (so that $s\.previous = \text{nil}$, $s\.value = A[1]$, $s\.next\.value = A[2]$, etc.)

(a) (8 points) Give a pseudocode implementation of this algorithm, and analyze its running time in the $\Theta(f(n))$ notation. Explain how we do not have to “bump” elements in order to create room for the next inserted elements. Is this saving asymptotically significant?

Solution: ***************** INSERT YOUR SOLUTION HERE ************ *** ☐

(b) (2 points) Can we speed up the time of the implementation to $O(n \log n)$ by utilizing binary search?

Solution: ***************** INSERT YOUR SOLUTION HERE ************ *** ☐
You are given two \(n \)-bit binary integers \(a \) and \(b \). These integers are stored in two arrays \(A[0, \ldots, n-1] \) and \(B[0, \ldots, n-1] \) in reverse, so that \(a = \sum_{i=0}^{n-1} A[i] \cdot 2^i \) and \(b = \sum_{i=0}^{n-1} B[i] \cdot 2^i \).

For example, if \(n = 6 \) and \(a = 000111 \) (7 in decimal) and \(b = 100011 \) (35 in decimal), then
\[
\]

Your goal is to produce an array \(C[0, \ldots, 2n-1] \) which stores the product \(c \) of \(a \) and \(b \). For example, \(000111 \cdot 100011 = 7 \cdot 35 = 245 = 000011110101 \), meaning that \(C[0 \ldots 11] = 101011110000 \).

(a) (2 points) Prove that \(c = \sum_{i:B[i]=1}(a \cdot 2^i) \).

Solution: ***************** INSERT YOUR SOLUTION HERE ***************

(b) (4 points) Write an \(O(n+i) \) time procedure \(\text{Shift}(A, n, i) \) to compute the \((n+i) \)-bit product \(a \cdot 2^i \).

Solution: ***************** INSERT YOUR SOLUTION HERE ***************

(c) (4 points) Assume you are given \(O(n) \) procedure \(\text{Add}(X, m, Y, k) \) which adds an \(m \)-bit \(X \) to \(k \)-bit \(Y \), where \(m, k \leq 2n \). Using this procedure, and your work in parts (a) and (b), write the pseudocode to produce the desired product array \(C \). Analyze the running time of your procedure in the \(\Theta(f(n)) \) notation, for appropriate function \(f(n) \).

Solution: ***************** INSERT YOUR SOLUTION HERE ***************
A degree-\(n\) polynomial \(P(x)\) is a function
\[P(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} + a_n x^n = \sum_{i=0}^{n} a_i x^i \]

(a) (2 points) Express the value \(P(x)\) as
\[P(x) = a_0 + a_1 x + \ldots + a_{n-2} x^{n-2} + b_{n-1} x^{n-1} = \sum_{i=0}^{n-1} b_i x^i \]
where \(b_0 = a_0, \ldots, b_{n-2} = a_{n-2}\). What is \(b_{n-1}\) as a function of the \(a_i\)'s and \(x\)?

Solution: ***************** INSERT YOUR SOLUTION HERE ************ ***

(b) (5 points) Using part (a) above write a recursive procedure \(\text{Eval}(A, n, x)\) to evaluate the polynomial \(P(x)\) whose coefficients are given in the array \(A[0 \ldots n]\) (i.e., \(A[0] = a_0, \text{etc.}\)). Make sure you do not forget the base case \(n = 0\).

Solution: ***************** INSERT YOUR SOLUTION HERE ************ ***

(c) (3 points) Let \(T(n)\) be the running time of your implementation of \(\text{Eval}\). Write a recurrence equation for \(T(n)\) and solve it in the \(\Theta(\cdot)\) notation.

Solution: ***************** INSERT YOUR SOLUTION HERE ************ ***

(d) (6 points) Assuming \(n\) is a power of 2, try to express \(P(x)\) as \(P(x) = P_0(x) + x^{n/2} P_1(x)\), where \(P_0(x)\) and \(P_1(x)\) are both polynomials of degree \(n/2\). Assuming the computation of \(x^{n/2}\) takes \(O(n)\) times, describe (in words or pseudocode) a recursive procedure \(\text{Eval}_2\) to compute \(P(x)\) using two recursive calls to \(\text{Eval}_2\). Write a recurrence relation for the running time of \(\text{Eval}_2\) and solve it. How does your solution compare to your solution in part (c)?

Solution: ***************** INSERT YOUR SOLUTION HERE ************ ***

(e) (Extra Credit.) Explain how to fix the slow “conquer” step of part (d) so that the resulting solution is as efficient as “expected”.

Solution: ***************** INSERT YOUR SOLUTION HERE ************ ***
For each of the following pairs of functions $f(n)$ and $g(n)$, state whether f is $O(g)$; whether f is $o(g)$; whether f is $\Theta(g)$; whether f is $\Omega(g)$; and whether f is $\omega(g)$. (More than one of these can be true for a single pair!)

(a) (2 points) $f(n) = 15n^{15} + 2; g(n) = \frac{n^{16} + 3n^2 + 4}{11} - 37n.$

Solution: ***************** INSERT YOUR SOLUTION HERE ***************

(b) (2 points) $f(n) = \log(n^{111} + 3n); g(n) = \log(n^2 - 1).$

Solution: ***************** INSERT YOUR SOLUTION HERE ***************

(c) (2 points) $f(n) = \log(2^n + n^{12}); g(n) = \log(n^{12}).$

Solution: ***************** INSERT YOUR SOLUTION HERE ***************

(d) (2 points) $f(n) = n^5 \cdot 2^n; g(n) = n^2 \cdot 3^n.$

Solution: ***************** INSERT YOUR SOLUTION HERE ***************

(e) (2 points) $f(n) = (n^n)^{10}; g(n) = n^{(n^2)}.$

Solution: ***************** INSERT YOUR SOLUTION HERE ***************