Problem 8-1 (Text Alignment) 6 points

Using dynamic programming, find the optimum printing of the text “Not all those who wander are lost”, i.e. $\ell_1 = 3, \ell_2 = 3, \ell_3 = 5, \ell_4 = 3, \ell_5 = 6, \ell_6 = 3, \ell_7 = 4$, with line length $L = 14$ and penalty function $P(x) = x^3$. Will the optimal printing you get be consistent with the strategy “print the word on as long as it fits, and otherwise start a new line”? Once again, you have to actually find the alignment, as opposed to only finding its penalty.

Problem 8-2 (Subset Sum) 12 points

(a) (8 points) You are given n integers $a_1, \ldots, a_n \geq 0$, and a target $T \geq 0$. Design an $O(nT)$ algorithm to determine if there exists a subset of the a_i’s that sum to T. For example, if $n = 5$ and $a_1 = 3, a_2 = 5, a_3 = 2, a_4 = 11, a_5 = 3$, then the answer is YES for $T = 10$ (e.g., $3 + 5 + 2 = 10$), but NO for $T = 9$.

(b) (4 points) Solve part (a) using only T bits of extra memory (in addition to the a_i’s themselves).

Problem 8-3 (Bracketings) 8 (+7) Points

Imagine a unary alphabet with a single letter x. A (valid) bracketing B is a string over three symbols $x, (,)$ defined recursively as follows: (1) a single letter x is a bracketing, and (2) for any $k \geq 2$, if B_1, \ldots, B_k are (valid) bracketings, then so is $B = (B_1B_2\ldots B_k)$. A bracketing B is called binary if rule (2) can only be applied with $k = 2$. Then the length n of B is the number of x’s it has (i.e., one ignores the parenthesis).

For example, there are 11 possible bracketings of length $n = 4$: $(xxxx), ((xx)xx), ((xx)x), (x(xx)x), (xx(xx)), (x(x(xx))), ((x(xx))x), (x(xx))x), (xx(xx))x)$, of which only the last five are binary.

(a) (4 points) Let $b(n)$ denote the number of binary bracketings of length n. Show that $b(n)$ is given by the following recurrence:

$$b(n) = \sum_{i=1}^{n-1} b(i)b(n-i).$$

(b) (4 points) Use the result from part (a) to give a dynamic programming algorithm to compute $b(n)$ given n as input. What is the running time of your algorithm? Assume that multiplication of two integers takes time $O(1)$.
(c) (7 points **Extra credit**) Generalize part (a) and (b) by giving a similar recurrence (with proof) as part (a) to find the total number \(f(n) \) of bracketings of length \(n \), and then give a dynamic programming algorithm to compute \(f(n) \) and analyze its running time.

Problem 8-4 (Multiplying to Hit a Given Target) 8 (+3) points

Let \(*: \{1, \ldots, k\} \times \{1, \ldots, k\} \to \{1, \ldots, k\} \) be a binary operation. Below we assume the values of \(a * b \) for \(a, b \in \{1, \ldots, k\} \) are stored in some \(k \times k \) array \(M \) such that \(M[a][b] = a * b \). Consider the problem of examining a string \(x = x_1 x_2 \ldots x_n \), where each \(x_i \in \{1, \ldots, k\} \), and deciding whether or not it is possible to parenthesize the expression \(x_1 * x_2 * \ldots * x_n \) in such a way that the value of the resulting expression is a given target element \(t \in \{1, \ldots, k\} \). Notice, the multiplication table is neither commutative or associative, so the order of multiplication matters (and, hence, the result of the expression is not even well defined unless a complete “parenthesization” is specified). For example, consider the following multiplication table and the string \(x = 2221 \).

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Parenthesizing it \((2 * 2) * (2 * 1)\) gives \(t = 1 \), but \(((2 * 2) * 2) * 1\) gives \(t = 3 \). On the other hand, no possible parenthesization gives \(t = 2 \) (you may check this).

(a) (8 points) Assume you are given as input the following: \(n, k, t, x[1\ldots n] \) and \(M \). Give a dynamic programming algorithm that runs in time polynomial in \(n \) and \(k \) and outputs YES if there exists a parenthesization for \(x \) that results in the product equal to \(t \), and NO otherwise. For instance, in the above example with \(x = 2221 \), the answer is YES if \(t = 1 \) or \(t = 3 \), but NO if \(t = 2 \).

(b) (3 points **Extra credit**) Analyze the running time of your algorithm.