1. Let FORMULA-SAT be the satisfiability problem for arbitrary boolean formulas. We know that FORMULA-SAT is NP-complete, since it is a generalization of 3SAT. However, for this exercise, you are to give a direct reduction from IS (independent set) to FORMULA-SAT. Recall that an instance I of IS consists of an undirected graph $G = (V,E)$ and a bound B, and a solution S is a set of distinct vertices v_1,\ldots,v_B such that no two of these vertices is connected by an edge in E. Your task is to exhibit a boolean formula ϕ such that I has an IS-solution S solution if and only if ϕ has a satisfying assignment.

Suggested construction: define ϕ using variables x_{ij}, where $i = 1,\ldots,B$ and $j = 1,\ldots,n$. Intuitively, $x_{ij} = 1$ corresponds to $v_i = j$. However, you will have to include in ϕ constraints that capture the requirements that the v_i’s are distinct and that there are no edges between any of the v_i’s.

2. Consider the following problem M. An instance of M is a collection of sets S_1,\ldots,S_m and a bound B. A solution is a set T containing B distinct items, such that (i) each item in T belongs to some S_i, and (ii) each S_i contains at most one item in T.

Show that M is NP-complete by giving a reduction IS \rightarrow M.

3. Recall the knapsack problem (K), which we know is NP-complete. An instance of K consists of a sequence of positive integers (a_1,\ldots,a_n,t). A solution is a subset S of the set of indices $1,\ldots,n$ such that $\sum_{i \in S} a_i = t$.

Consider the following variant of the knapsack problem, called it HK. An instance of HK consists of a sequence of positive integers (a_1,\ldots,a_n). A solution is a subset S of the set of indices $1,\ldots,n$ such that $\sum_{i \in S} a_i = \sum_{j \notin S} a_j$.

The goal of this exercise is to show that HK is NP-complete by giving a reduction K \rightarrow HK.

To this end, consider the following reduction: given an instance $I = (a_1,\ldots,a_n,t)$ of K, we map it to the instance $I' = (a_1,\ldots,a_n,s,2t)$ of HK, where $s := \sum_{i=1}^n a_i$.

Show that I has a K-solution if and only if I' has an HK-solution.

4. Consider bin packing problem (BP). Intuitively, the problem is to pack a collection of items of varying sizes into as few bins as possible, where each bin has capacity c. We can formally define this as a search problem as follows.

An instance of BP is a sequence of positive integers (a_1,\ldots,a_n,c,B). A solution is a partition S_1,\ldots,S_B of the set of indices $1,\ldots,n$ such that for each $k = 1,\ldots,B$, we have $\sum_{i \in S_k} a_i \leq c$.

Show that BP is NP-complete.

Hint: give a reduction HK \rightarrow BP, where HK is defined as in the previous problem.

5. Suppose that you were given a polynomial-time algorithm that determines if a given 3CNF formula has a satisfying assignment (the output of this algorithm is true or false). Using this algorithm as a subroutine, design a polynomial-time algorithm that not only determines if a given 3CNF formula has a satisfying assignment, but also outputs a satisfying assignment if one exists.

No Honors problem this week.