Some background

Theorem. Let $G = (V, E)$ be an undirected graph. The following are equivalent.

1. G is a tree
2. every pair of vertices in G is connected by a single path, which is simple (no vertices repeat)
3. G is connected, but removing any edge makes it unconnected
4. G is acyclic, but adding any edge makes it cyclic
5. G is connected and $|E| = |V| - 1$
6. G is acyclic and $|E| = |V| - 1$
A generic MST algorithm

- Suppose $A \subseteq E$ is contained in some MST

 An edge $e \in E$ is called \textbf{safe for} A if $A \cup \{e\}$ is also contained in some MST

- Generic MST algorithm:

 \[
 A \leftarrow \emptyset \\
 \text{repeat } |V| - 1 \text{ times:} \\
 \quad \text{find } e \in E \setminus A \text{ that is safe for } A \\
 \quad A \leftarrow A \cup \{e\}
 \]
Recognizing safe edges

- **Definition:**

 - A **cut** \(C \) is a partition \((S, V \setminus S)\), where \(\emptyset \subsetneq S \subsetneq V \)

 - An edge \(e \in E \) **crosses** a cut \(C = (S, V \setminus S) \) if one endpoint of \(e \) lies in \(S \), and the other lies in \(V \setminus S \)

 - A cut \(C \) **respects** \(A \subseteq E \) if no edge in \(A \) crosses \(C \)
Cut Lemma:

- Let $G = (V, E)$ be a connected, undirected graph with weights $w : E \rightarrow \mathbb{R}$
- Let $A \subseteq E$ be a subset of some MST
- Let C be a cut that respects A
- Let $e \in E$ be an edge of smallest weight that crosses C
- Then: e is safe for A
Proof:

• Let T be an MST containing A
• If $e \in T$, we’re done, so assume $e \notin T$
• Goal: construct an MST $T' \supseteq A \cup \{e\}$
• Let $e = \{u, v\}$
• Consider the unique path p from u to v in T (which is simple)
• Since e crosses the cut C, there must be some e' along p that crosses C
• Set $T' := (T \setminus \{e'\}) \cup \{e\}$
• Want to show: T' is an MST that includes A
Proof (cont’d):

- \((V, T')\) is a tree
 \(|T'| = |V| - 1\) and \((V, T')\) is connected
- \(T' \supseteq A\)
 \(C\) respects \(A\), \(e'\) crosses \(C\) \(\Rightarrow\) \(e' \notin A\)
- \(T'\) is an MST
 Both \(e\) and \(e'\) cross \(C\) \(\Rightarrow\) \(w(e) \leq w(e')\)
- QED