Lecture 5-6: Bits, Bytes, and Integers

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com

Slides adapted from:
• Jinyang Li
• Bryant and O’Hallaron
• Clark Barrett
Today: Bits, Bytes, and Integers

• Representing information as bits
• Bit-level manipulations
• Integers
 – Representation: unsigned and signed
 – Conversion, casting
 – Expanding, truncating
 – Addition, negation, multiplication, shifting
• Summary
Binary Representations
Encoding Byte Values

• Byte = 8 bits
 – Binary 00000000\textsubscript{2} to 11111111\textsubscript{2}
 – Decimal: 0\textsubscript{10} to 255\textsubscript{10}
 – Hexadecimal 00\textsubscript{16} to FF\textsubscript{16}

 • Base 16 number representation
 • Use characters '0' to '9' and 'A' to 'F'
 • Write FA1D37B\textsubscript{16} in C language as
 – 0xFA1D37B
 – 0xfa1d37b
Byte-Oriented Memory Organization

- Programs Refer to **Virtual Addresses**
 - Conceptually very large array of bytes
 - Actually implemented with hierarchy of different memory types
 - System provides address space private to particular "process"
 - Program being executed
 - Program can manipulate its own data, but not that of others
- **Compiler + Run-Time System Control Allocation**
 - Where different program objects should be stored
 - All allocation within single virtual address space
Machine Words

- **Machine Has “Word Size”**
 - Nominal size of integer-valued data
 - Including addresses
 - Until recently, most machines used 32-bit (4-byte) words
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
 - These days, most new systems use 64-bit (8-byte) words
 - Potential address space $\approx 1.8 \times 10^{19}$ bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
Byte Ordering

• How are bytes within a multi-byte word ordered in memory?

• Conventions
 – **Big Endian**: Sun, PPC, Internet
 • Least significant byte has highest address
 – **Little Endian**: x86
 • Least significant byte has lowest address
Byte Ordering Example

• Big Endian
 – Least significant byte has highest address

• Little Endian
 – Least significant byte has lowest address

• Example
 – Variable x has 4-byte representation 0x01234567
 – Address given by &x is 0x100

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>01</td>
<td>23</td>
<td>45</td>
<td>67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>67</td>
<td>45</td>
<td>23</td>
<td>01</td>
</tr>
</tbody>
</table>
Reading Byte-Reversed Listings

- **Disassembly**
 - Text representation of binary machine code

- **Example Fragment**

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

- **Deciphering Numbers**
 - Value: 0x12ab
 - Pad to 32 bits: 0x000012ab
 - Split into bytes: 00 00 12 ab
 - Reverse: ab 12 00 00
Examining Data Representations

- Code to print Byte Representation of data

```c
typedef unsigned char* pointer;

void show_bytes(pointer start, int len){
    int i;
    for (i = 0; i < len; i++)
        printf("%p	%2x\n", start+i, start[i]);
    printf("\n");
}
```

printf directives:
- %p: Print pointer
- %x: Print Hexadecimal
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

Result (Linux):
int a = 15213;
0x11fffffffcb8 0x6d
0x11fffffffcb9 0x3b
0x11fffffffcba 0x00
0x11fffffffccb 0x00

Note: 15213 in decimal is 3B6D in hexadecimal
Representing Integers

Decimal: 15213
Binary: 0011 1011 0110 1101
Hex: 3 B 6 D

int A = 15213;
long int C = 15213;

int B = -15213;

Two’s complement representation (Covered later)
Representing Pointers

```c
int B = -15213;
int *P = &B;
```

Different compilers & machines assign different locations to objects
Representing Strings

- **Strings in C**
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character '0' has code 0x30
 - Digit i has code 0x30+i
 - String should be null-terminated
 - Final character = 0
- **Byte ordering not an issue**
Today: Bits, Bytes, and Integers

- Representing information as bits
- **Bit-level manipulations**
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
Boolean Algebra

• Developed by George Boole in 19th Century
 – Algebraic representation of logic
 • Encode “True” as 1 and “False” as 0

And

- A&B = 1 when both A=1 and B=1

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A&B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Or

- A|B = 1 when either A=1 or B=1

| A | B | A|B |
|---|---|----|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

Not

- ~A = 1 when A=0

<table>
<thead>
<tr>
<th>A</th>
<th>~ A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)

- A^B = 1 when either A=1 or B=1, but not both

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A^B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Application of Boolean Algebra

• Applied to Digital Systems by Claude Shannon
 – 1937 MIT Master’s Thesis
 – Reason about networks of relay switches
 • Encode closed switch as 1, open switch as 0
General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

\[
\begin{array}{cccc}
01101001 & \text{&} & 01010101 & \rightarrow 01000001 \\
01000001 & \text{|} & 01101001 & \rightarrow 01111101 \\
01101001 & \text{^} & 01010101 & \rightarrow 00111100 \\
01010101 & \sim & 01010101 & \rightarrow 10101010 \\
\end{array}
\]
Bit-Level Operations in C

• Operations & , | , ~ , ^ Available in C
 – Apply to any “integral” data type
 • long, int, short, char, unsigned
 – View arguments as bit vectors
 – Arguments applied bit-wise

• Examples (Char data type)
 – ~0x41 = 0xBE
 • ~01000001\textsubscript{2} = 10111110\textsubscript{2}
 – ~0x00 = 0xFF
 • ~00000000\textsubscript{2} = 11111111\textsubscript{2}
 – 0x69 & 0x55 = 0x41
 • 01101001\textsubscript{2} & 01010101\textsubscript{2} = 01000001\textsubscript{2}
 – 0x69 | 0x55 = 0x7D
 • 01101001\textsubscript{2} | 01010101\textsubscript{2} = 01111101\textsubscript{2}
Contrast: Logic Operations in C

• Contrast to Logical Operators
 – &&, ||, !
 • View 0 as “False”
 • Anything nonzero as “True”
 • Always return 0 or 1
 • Early termination

• Examples (char data type)
 – !0x41 = 0x00
 – !0x00 = 0x01
 – !!0x41 = 0x01
 – 0x69 && 0x55 = 0x01
 – 0x69 || 0x55 = 0x01
 – p && *p (avoids null pointer access)
Shift Operations

• **Left Shift:** \(x << y \)
 - Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

• **Right Shift:** \(x >> y \)
 - Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on right

• **Undefined Behavior**
 - Shift amount < 0 or ≥ word size
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
Encoding Integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

- **C short 2 bytes long**

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

- **Sign Bit**
 - For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative
Numeric Ranges

- **Unsigned Values**
 - $U_{\text{min}} = 000..0 = 0$
 - $U_{\text{max}} = 111..1 = 2^w - 1$

- **Two’s Complement Values**
 - $T_{\text{min}} = 100..0 = -2^{w-1}$
 - $T_{\text{max}} = 011..1 = 2^{w-1} - 1$
 - $111...1 = -1$

Values for $W = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>Tmax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th>W</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

- \[|T_{\text{Min}}| = T_{\text{Max}} + 1 \]
 - Asymmetric range
- \[U_{\text{Max}} = 2 \times T_{\text{Max}} + 1 \]

C Programming

- #include <limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific
Unsigned & Signed Numeric Values

- Equivalence
 - Same encodings for nonnegative values

- Uniqueness
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- **Integers**
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

- Keep bit representations and reinterpret
- +/- 16
Signed vs. Unsigned in C

• Constants
 – By default, signed integers
 – Unsigned with “U” as suffix
 0U, 4294967259U

• Casting
 – Explicit casting between signed & unsigned
    ```
    int tx, ty;
    unsigned ux, uy;
    tx = (int) ux;
    uy = (unsigned) ty;
    ```

 – Implicit casting also occurs via assignments and procedure calls
    ```
    tx = ux;
    uy = ty;
    ```
Casting Surprises

• Expression Evaluation
 – If there is a mix of unsigned and signed in single expression,
 signed values implicitly cast to unsigned
 – Including comparison operations <, >, ==, <=, >=
Today: Bits, Bytes, and Integers

• Representing information as bits
• Bit-level manipulations
• Integers
 – Representation: unsigned and signed
 – Conversion, casting
 – Expanding, truncating
 – Addition, negation, multiplication, shifting
• Summary
Expanding

- Convert w-bit signed integer to $w+k$-bit with same value
- Convert unsigned: pad k 0 bits in front
- Convert signed: make k copies of sign bit
Sign Extension Example

```
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D 00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00 00 3B 6D 00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF C4 93 11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>

- Converting from smaller to larger integer data type
- C automatically performs sign extension
Truncating

• Example: from int to short (i.e. from 32-bit to 16-bit)
• High-order bits are truncated
• Value is altered \rightarrow must reinterpret
• The non-intuitive behavior can lead to buggy code!
Today: Bits, Bytes, and Integers

• Representing information as bits
• Bit-level manipulations

• Integers
 – Representation: unsigned and signed
 – Conversion, casting
 – Expanding, truncating
 – Addition, negation, multiplication, shifting

• Summary
Negation: Complement & Increment

• The complement of x satisfies
 $\text{TComp}(x) + x = 0$

 $\text{TComp}(x) = \neg x + 1$

• Proof sketch
 – Observation: $\neg x + x \equiv 1111...111 \equiv -1$

\[
\begin{array}{c}
x \quad 100111101 \\
+ \quad \neg x \quad 01100010 \\
\hline
-1 \quad 111111111
\end{array}
\]
Complement Examples

$x = 15213$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>$\sim x$</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>$\sim x + 1$</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$T_{\text{comp}}(x)$</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

$x = 0$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00 00 00000000 00000000</td>
</tr>
<tr>
<td>~ 0</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>$\sim 0 + 1$</td>
<td>0</td>
<td>0</td>
<td>00 00 00000000 00000000</td>
</tr>
</tbody>
</table>
Unsigned Addition

Operands: \(w \) bits

True Sum: \(w+1 \) bits

Discard Carry: \(w \) bits

- **Standard Addition Function**
 - Ignores carry output
 \[s = \text{UAdd}_w(u, v) = u + v \mod 2^w \]
Two's Complement Addition

Operands: w bits

\[
\begin{array}{c}
\text{u} \\
+ \text{v}
\end{array}
\]

True Sum: $w+1$ bits

\[
\text{u + v}
\]

Discard Carry: w bits

\[
\text{TAdd}_w(u, v)
\]

- If $\text{sum} \geq 2^{w-1}$, becomes negative (positive overflow)
- If $\text{sum} < -2^{w-1}$, becomes positive (negative overflow)
Multiplication

- Computing Exact Product of w-bit numbers x, y
 - Either signed or unsigned

Ranges
- Unsigned: $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
 - Up to $2w$ bits
- Two’s complement min: $x \times y \geq (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Up to $2w-1$ bits
- Two’s complement max: $x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$
 - Up to $2w$ bits, but only for $(TMin_w)^2$

Maintaining Exact Results
- Would need to keep expanding word size with each product computed
Unsigned/Signed Multiplication in C

- **Standard Multiplication Function**
 - Ignores high order \(w \) bits
- **Unsigned Multiplication Implements Modular Arithmetic**
 \[
 \text{UMult}_w(u, v) = u \cdot v \mod 2^w
 \]
Power-of-2 Multiply with Shift

• **Operation**
 - \(u \ll k \) gives \(u \times 2^k \)
 - Both signed and unsigned

<table>
<thead>
<tr>
<th>Operands: w bits</th>
<th>(u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\times 2^k)</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>True Product: (w+k) bits</td>
<td>(u \times 2^k)</td>
</tr>
<tr>
<td>Discard (k) bits: w bits</td>
<td>(\cdots)</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c}
\text{u} \\
\text{\(\ll \)}
\end{array}
\begin{array}{c}
k \\
\text{\(2^k \)}
\end{array}
\begin{array}{c}
\text{u} \\
\text{\(\times \)}
\end{array}
\begin{array}{c}
w+k \\
\text{bits}
\end{array}
\begin{array}{c}
w \\
\text{bits}
\end{array}
\begin{array}{c}
0 \\
\text{\(\cdots \)}
\end{array}
\begin{array}{c}
1 \\
\text{\(\cdots \)}
\end{array}
\begin{array}{c}
0 \\
\text{\(\cdots \)}
\end{array}
\]

• **Examples**
 - \(u \ll 3 \equiv u \times 8 \)
 - \((u \ll 5) - (u \ll 3) \equiv u \times 24 \)
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically
Compiled Multiplication Code

C Function

```c
int mul12(int x) {
    return x*12;
}
```

Compiled Arithmetic Operations

```
leal (%eax,%eax,2), %eax
sall $2, %eax
```

Explanation

```
t = x+x*2
return t << 2;
```

- C compiler automatically generates shift/add code when multiplying by constant
Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 \[u \gg k \] gives \(\lfloor u / 2^k \rfloor \)

- Operands:
 \[u \]

- Result:
 \(\lfloor u / 2^k \rfloor \)

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x 15213</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>x >> 1</td>
<td>7606.5</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>x >> 4</td>
<td>950.8125</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>x >> 8</td>
<td>59.4257813</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Compiled Unsigned Division Code

C Function

```c
unsigned udiv8(unsigned x) {
    return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>

For Java Users: Logical shift written as `>>>`.
Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 \(x \gg k \) gives \(\lfloor x / 2^k \rfloor \)
 - Uses arithmetic shift

\[
\begin{array}{c}
\text{Operands:} \\
\text{Result: RoundDown}(x / 2^k)
\end{array}
\]

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>(y \gg 1)</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>(y \gg 4)</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>(y \gg 8)</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>111111111 11000100</td>
</tr>
</tbody>
</table>
Trick! Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $\lceil x / 2^k \rceil$ (Round Toward 0)
 - Compute as $\lfloor (x+2^k-1)/2^k \rfloor$

- In C: $(x + (1<<k)-1) >> k$

Exploiting the property that:

$$\lceil x / y \rceil = \lfloor (x+y-1)/y \rfloor$$
Compiled Signed Division Code

C Function

```c
int idiv8(int x)
{
    return x/8;
}
```

Compiled Arithmetic Operations

```assembly
TESTL %eax, %eax
JS L4
L3:
    SARL $3, %eax
    RET
L4:
    ADDL $7, %eax
    JMP L3
```

Explanation

```c
if x < 0
    x += 7;
# Arithmetic shift
    return x >> 3;
```

- Uses arithmetic shift for int
- For Java Users
 - Arith. shift written as >>
Conclusions

• Everything is stored in memory as 1s and 0s
• The binary presentation by itself does not carry a meaning, it depends on the interpretation.
• When to use signed and when to use unsigned?