Elements of a list can themselves be lists. In such a case we may speak of a “2 dimensional “list.

Consider a 2 dimensional “square list”, i.e. the list has n elements, where each one is itself a list of n elements. For example if n=5, we would have a 5X5 “table” of 5 rows and 5 columns.

Imagine filling the table with random integers.

Now, here is a definition: A saddle point in a 2 dimensional square table is an entry in the table whose value is the minimum in its row and maximum in its column. In the table below, 0 is a saddle point.

```
    2   0
    0  -2
```

Write a function to find a saddle point in a 2 dimensional table, if one exists.

Input

Any two dimensional square of integers.

Output

- If a saddle point was found return a triple (value, x pos, y pos)
- If a saddle point was not found return “not found”

Test your program for a number of cases (of various sizes) with and without saddle points.

Questions to consider:

Must any such table have a saddle point?

Could it have more than one?