CSCI-GA.3033-004
Graphics Processing Units (GPUs): Architecture and Programming

Lecture 8: Advanced Techniques

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com
Floating Points
Importance of Floating Points

• Many graphics operations are floating point operations

• GPU performance is measure in GFLOPS
Turing Award 1989 to William Kahan for design of the IEEE Floating Point Standards 754 (binary) and 854 (decimal)
What is Excel doing?

<table>
<thead>
<tr>
<th>A1:</th>
<th>1.3333333333333333330000</th>
<th>=4/3</th>
</tr>
</thead>
</table>

Excel tries to round internal binary floating point to output decimal format to look like what it thinks the user wants to see, rather than the most accurate answer (depending on parentheses).
Floating Point

- We need a way to represent
 - numbers with fractions, e.g., 3.1416
 - very small numbers, e.g., .000000001
 - very large numbers, e.g., 3.15576×10^9

- Representation:
 - sign, exponent, mantissa: $(-1)^{\text{sign}} \times \text{mantissa} \times 2^{\text{exponent}}$
 - more bits for mantissa gives more accuracy
 - more bits for exponent increases range

- IEEE 754 floating point standard:
 - single precision: 8 bit exponent, 23 bit mantissa
 - double precision: 11 bit exponent, 52 bit mantissa
IEEE 754 floating-point standard

- Leading “1” bit of significand is implicit (called *hidden 1 technique*, except when exp = -127)
- Exponent is “biased” to make sorting easier
 - all 0s is smallest exponent
 - all 1s is largest exponent
 - bias of 127 for single precision and 1023 for double precision
- summary: \((-1)^{\text{sign}} \times (1+\text{significand}) \times 2^{\text{exponent} - \text{bias}}\)

- Example:
 - decimal: \(-.75 = - \left(\frac{1}{2} + \frac{1}{4} \right)\)
 - binary: \(-.11 = -1.1 \times 2^{-1}\)
 - floating point: exponent = 126 = 0111110
 - IEEE single precision: 10111111010000000000000000000000
More about IEEE floating Point Standard

Single Precision:

\((-1)^\text{sign} \times (1+\text{mantissa}) \times 2^{\text{exponent} - 127}\)

The variables shown in red are the numbers stored in the machine
Floating Point Example

what is the decimal equivalent of

1 01110110 10110000...0
Special Patterns

• Representation of zero
 – No hidden one
 – Exponent and mantissa are 0s

• When all exponent bits are ones
 – If mantissa is zero -> infinity
 – If mantissa is nonzero -> Not a Number (NaN)
What is the decimal equivalent of:

10111111110100000000000000000000

- 127

So:

• Real exponent = 127 - 127 = 0
 • There is hidden 1

Final answer = -1.625
In Summary About Floating Points

<table>
<thead>
<tr>
<th>exponent</th>
<th>mantissa</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>11...1</td>
<td>≠ 0</td>
<td>NaN</td>
</tr>
<tr>
<td>11...1</td>
<td>=0</td>
<td>((-1)^s \times \infty)</td>
</tr>
<tr>
<td>00...0</td>
<td>≠0</td>
<td>denormalized</td>
</tr>
<tr>
<td>00...0</td>
<td>=0</td>
<td>0</td>
</tr>
</tbody>
</table>
Algorithm Considerations

- Non \textit{representable} numbers are rounded
- This rounding \textit{error} leads to different results depending on the order of operations
 - Non-repeatability makes debugging harder
- A common technique to maximize floating point arithmetic accuracy is to presort data before a reduction computation.
So..

When doing floating-point operations in parallel you have to decide:

• How much accuracy is good enough?
• Do you need single-precision or double precision?
• Can you tolerate presorting overhead, if you care about rounding errors?
Alignment
Memory Alignment

- Memory access on the GPU works much better if the data items are aligned at 64 byte boundaries.
- Hence, allocating 2D arrays so that every row starts at a 64-byte boundary address will improve performance.
- Difficult to do for a programmer!
2D Arrays

- **CUDA offers special versions of:**
 - Memory allocation of 2D arrays so that every row is padded (if necessary). The function determines the best pitch and returns it to the program. The function name is `cudaMallocPitch()`
 - Memory copy operations that take into account the pitch that was chosen by the memory allocation operation. The function name is `cudaMemcopy2D()`
cudaMallocPitch(void** devPtr,
size_t* pitch,
size_t widthInBytes,
size_t height)

• This allocates at least \textit{width (in bytes) \times height} array.
• The value returned in pitch is the width in bytes of the allocation.
• The above function determines the best pitch and returns it to the program.
• It is strongly recommends the usage of this function for allocating 2D (and 3D) arrays.
cudaError_t cudaMemcpy2D (void * dst,
 size_t dpitch,
 const void * src,
 size_t spitch,
 size_t width,
 size_t height,
 enum cudaMemcpyKind kind)

- *dst* - Destination memory address
- *dpitch* - Pitch of destination memory
- *src* - Source memory address
- *spitch* - Pitch of source memory
- *width* - Width of matrix transfer (in bytes)
- *height* - Height of matrix transfer (rows)
- *kind* - Type of transfer

The widths in memory in bytes including any padding added to the end of each row.
Example

```c
int main(int argc, char * argv[])
{
    float * A, *dA;
    size_t pitch;

    A = (float *)malloc(sizeof(float)*N*N);
    cudaMemcpy2D(dA, pitch, A, sizeof(float)*N, sizeof(float)*N, N, cudaMemcpyHostToDevice);

    //copy memory from unpadded array A of 760 by 760 dimensions
    //to more efficient dimensions on the device
    cudaMemcpy2D(dA, pitch, A, sizeof(float)*N, sizeof(float)*N, N, cudaMemcpyHostToDevice);

    ...
}
```
So..
Pitch is a good technique to speedup memory access
• There are two drawbacks that you have to live with:
 • Some wasted space
 • A bit more complicated elements access
Streams
Streams

- A sequence of operations that execute on the device in the order in which they are issued by the host code
- Operations in different streams can be interleaved and, when possible, they can even run concurrently.
- A stream can be sequence of kernel launches and host-device memory copies
- Can have several open streams to the same device at once
- Need GPUs with concurrent transfer/execution capability
- Potential performance improvement: can overlap transfer and computation
Streams

- By default all transfers and kernel launches are assigned to stream 0
 - This means they are executed in order
Example: Default Stream

```c
cudaMemcpy(d_a, a, numBytes, cudaMemcpyHostToDevice);
increment<<<1,N>>>(d_a);
cudaMemcpy(a, d_a, numBytes, cudaMemcpyDeviceToHost);
```

- In the code above, from the perspective of the device, all three operations are issued to the same (default) stream and will execute in the order that they were issued.
- From the perspective of the host:
 - data transfers are blocking or synchronous transfers
 - kernel launch is asynchronous.
Example: Non-Default Stream

Non-default streams in CUDA C/C++ are declared, created, and destroyed in host code as follows:

```c
cudaStream_t stream1;
cudaError_t result;
result = cudaStreamCreate(&stream1);
result = cudaStreamDestroy(stream1);
```

To issue data transfer to non-default stream (non-blocking):

```c
result = cudaMemcpyAsync(d_a, a, N, cudaMemcpyHostToDevice, stream1);
```

To launch a kernel to non-default stream:

```c
increment<<<1,N,0,stream1>>>(d_a);
```
Important

• All operations to non-default streams are non-blocking with respect to the host code.
• Sometimes you need to synchronize the host code with operations in a stream.
• You have several options:
 – `cudaDeviceSynchronize()` → blocks host
 – `cudaStreamSynchronize(stream)` → blocks host
 – `cudaStreamQuery(stream)` → does not block host
Streams

• The amount of overlap execution between two streams depends on:
 – Device supports overlap transfer and kernel execution (compute capability 1.1 and higher)
 – Devices supports concurrent kernel execution (compute capability 2.x and higher)
 – Device supports concurrent data transfer (compute capability 2.x and higher)
 – The order on which commands are issued to each stream
Using streams to overlap device execution with data transfer

• **Conditions to be satisfied first:**
 - The device must be capable of *concurrent copy and execution*.
 - The kernel execution and the data transfer to be overlapped must both occur in *different, non-default streams*.
 - The host memory involved in the data transfer must be *pinned memory*.
Using streams to overlap device execution with data transfer

for (int i = 0; i < nStreams; ++i) {

 int offset = i * streamSize;

 cudaMemcpyAsync(&d_a[offset], &a[offset],
 streamBytes,
 cudaMemcpyHostToDevice,
 stream[i]);

 kernel<<.......>>(d_a, offset);

 cudaMemcpyAsync(&a[offset], &d_a[offset],
 streamBytes,
 cudaMemcpyDeviceToHost,
 stream[i]);
}

So..

- Streams are a good way to overlap execution and transfer, hardware permits.
- Don’t confuse kernels, threads, and streams.
Pinned Pages

• Allocate page(s) from system RAM (cudaMallocHost() or cudaHostAlloc())
 – Accessible by device (but wait till next slide)
 – Cannot be paged out
 – Enables highest memory copy performance (cudaMemcpyAsync())
 – Don’t forget cudaFreeHost();

• If too much pinned pages, overall system performance may greatly suffer.
Host page accessible by the device??

• The pointer to the host memory is not directly transferable to device, except with:
 – `cudaHostGetDevicePointer(void ** pDevice, void * pHost, unsigned int flags)`
 – flags are 0 for now

• Accessing host memory from device without explicit copy is called “zero-copy” mechanism.
Steps for Zero-Copy

1. `cudaHostAlloc` (void ** ptr, size_t size, unsigned int flags)
 – flag here: `cudaHostAllocMapped`

2. `cudaHostGetDevicePointer()`

3. Then use the pointer in your kernel on device as if it is in the GPU memory
#include <stdio.h>
#include <cuda.h>
#include <stdlib.h>
#define N 32 // size of vectors

__global__ void add(int *a, int *b, int *c) {
 int tid = blockIdx.x * blockDim.x + threadIdx.x;
 if (tid < N) c[tid] = a[tid] + b[tid];
}

int main(int argc, char *argv[]) {
 int T = 32, B = 1; // threads per block and blocks per grid
 int *a,*b,*c; // host pointers
 int *dev_a, *dev_b, *dev_c; // device pointers to host memory

 cudaHostAlloc((void**)&a, size, cudaHostAllocMapped);
 cudaHostAlloc((void**)&b, size, cudaHostAllocMapped);
 cudaHostAlloc((void**)&c, size, cudaHostAllocMapped);

 ... // load arrays with some numbers

 cudaHostGetDevicePointer(&dev_a, a, 0);
 cudaHostGetDevicePointer(&dev_b, b, 0);
 cudaHostGetDevicePointer(&dev_c, c, 0);

 add<<<B,T>>>(dev_a,dev_b,dev_c);

 cudaFreeHost(a);
 cudaFreeHost(b);
 cudaFreeHost(c);

 return 0;
}
So..

- If the CPU program requires a lot of memory, then pinned pages is not a good idea.
Asynchronous Execution

• Asynchronous = returns to host right-away and does not wait for device

• This includes (but not limited to):
 – Kernel launches;
 – Memory copies between two addresses to the same device memory;
 – Memory copies from host to device of a memory block of 64 KB or less;
 – Memory copies performed by functions that are suffixed with Async;
Asynchronous Execution

• Some CUDA API calls and all kernel launches are asynchronous with respect to the host code.
• This means error-reporting is also asynchronous.

```c
cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, 0);
kernelfeedback_cuda<<<grid, block>>>(a_d);
cpuFunction();
```
Other Sources of Concurrency

• Some devices of compute capability 2.x and higher can execute multiple kernels concurrently.
• The maximum number of kernel launches that a device can execute concurrently is 32 on devices of compute capability 3.5 and 16 on devices of lower compute capability.
• A kernel from one CUDA context cannot execute concurrently with a kernel from another CUDA context.
• Kernels that use many textures or a large amount of local memory are less likely to execute concurrently with other kernels.
• Some devices of compute capability 2.x and higher can perform a copy from page-locked host memory to device memory concurrently with a copy from device memory to page locked host memory.
Texture Memory
Texture Memory

• read-only memory
• Can improve performance and reduce memory traffic when reads have certain access patterns.
• Originally designed for the classical OpenGL and DirectX rendering pipelines.
• But has some properties that make it extremely useful for computing, especially computer vision application.
Texture Memory

• Texture memory is cached on chip
 – In some situations it will provide higher effective bandwidth by reducing memory requests to off-chip DRAM.

• Texture caches are designed for graphics applications where memory access patterns exhibit a great deal of spatial locality.
 – In computation, it means a thread is likely to read from an address near the address that nearby threads read.
Texture Memory

• The texture cache is optimized for 2D spatial locality.
• Part of DRAM
• The process of reading a texture is called a **texture fetch**.
• Can be addressed as 1D, 2D, or 3D dimensional arrays.
• Elements of the array are called **texels**.
Texture Memory

To accelerate frequently performed operations such as mapping a 2D "skin" onto a 3D polygonal model.
Texture Memory
Texture Memory

Capabilities:

- Ability to cache global memory
- Dedicated interpolation hardware
- Provides a way to interact with the display capabilities of the GPU.

The best performance is achieved when the threads of a warp read locations that are close together from a spatial locality perspective.
Texture Fetch

• First parameter is texture reference
 – defines which part of texture memory is fetched
 – must be bound through runtime functions to texture memory

 – Attribute:
 • texture is addressed as 1D, 2D, or 3D
 • the input and output data types of the texture fetch
 • the input coordinates are interpreted
 • what processing should be done

 – Type of texels are the basic: integer, single/double precision floating point, ...
Steps for Using Texture Memory in Your CUDA Code

1. Declare the texture memory in CUDA.
2. Bind the texture memory to your texture reference in CUDA.
3. Read the texture memory from your texture reference in CUDA Kernel.
4. Unbind the texture memory from your texture reference in CUDA.
Step 1: Declare

texture (type, dim, readmode) texture_reference;

• texture_reference: the handle to be used
• type: type of texel data returned from an access to the texture: int, float,
• dim: 1 (default), 2, or 3
• readmode: controls conversion of texel returned by an access
 – cudaReadModeElementType (default) no conversion
 – cudaReadModeNormalizedFloat
 • if type is integer, value returned is mapped to [-1.0, 1.0] for signed, and [0.0, 1.0] for unsigned

• Example:
texture <float, 2, cudaReadModeElementType> mytex;
Step 2: Bind

cudaBindTexture (size *t offset,
& texture_reference, const void * devptr,
size_t size);

• Binds size bytes of the memory area pointed to by devPtr to texture reference texture_reference.
• offset parameter is an optional byte offset.
• devPtr: Memory area on device
• size: Size of the memory area pointed to by devPtr
Step 3: Read

• The easiest is: `tex1Dfetch()`

Example:
```c
texture <int,1,cudaReadModeElementType> texref;
__global__
void textureTest(int *out){
    int tid = blockIdx.x * blockDim.x + threadIdx.x;
    float x;
    int i;
    for(i=0; i<30; i++)
        x = tex1Dfetch(texref, i);
}
```
Step 4: Unbind

cudaUnbindTexture(texture_reference);
So

- Texture memory size is very small.
- We just scratched the surface of texture memory.
- Dealing with texture memory is way more complicated.
Some Useful Tools
nvcc

- Some nvcc features: `--ptxas-options=-v`
 - Print the smem, register and other resource usages
- Generates CUDA binary file: `nvcc -cubin`
 - cubin file is the cuda executable
 - The default for nvcc is to embed it the host executable
Dealing with binary files

<table>
<thead>
<tr>
<th>Extract ptx and extract and disassemble cubin from the following input files:</th>
<th>cuobjdump</th>
<th>nvdisasm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host binaries</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Executables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Object files</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static libraries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External fatbinary files</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control flow analysis and output</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Advanced display options</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
nvprof

• CUDA profiler

```
$ nvprof [nvprof_args] <app> [app_args]
```

• To profile a region of the application:
 1. `#include <cuda_profiler_api.h>`
 2. in the host function surround the region with:
 • `cudaProfilerStart()`
 • `cudaProfilerStop()`
 3. `nvcc myprog.cu`
 4. `nvprof --profile-from-start-off ./a.out`
nvprof summary mode (default)

```
$ nvprof dct8x8

======== Profiling result:

<table>
<thead>
<tr>
<th>Time(%)</th>
<th>Time</th>
<th>Calls</th>
<th>Avg</th>
<th>Min</th>
<th>Max</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.52</td>
<td>9.36ms</td>
<td>101</td>
<td>92.68us</td>
<td>92.31us</td>
<td>94.31us</td>
<td>CUDAkernel2DCT(float*, float*, int)</td>
</tr>
<tr>
<td>37.47</td>
<td>7.08ms</td>
<td>10</td>
<td>708.31us</td>
<td>707.99us</td>
<td>708.50us</td>
<td>CUDAkernel1IDCT(float*, int, int, int)</td>
</tr>
<tr>
<td>3.75</td>
<td>708.42us</td>
<td>1</td>
<td>708.42us</td>
<td>708.42us</td>
<td>708.42us</td>
<td>CUDAkernel1IDCT(float*, int, int, int)</td>
</tr>
<tr>
<td>1.84</td>
<td>347.99us</td>
<td>2</td>
<td>173.99us</td>
<td>173.59us</td>
<td>174.40us</td>
<td>CUDAkernelQuantizationFloat()</td>
</tr>
<tr>
<td>1.75</td>
<td>331.37us</td>
<td>2</td>
<td>165.69us</td>
<td>165.67us</td>
<td>165.70us</td>
<td>[CUDA memcpyDtoH]</td>
</tr>
<tr>
<td>1.41</td>
<td>266.70us</td>
<td>2</td>
<td>133.35us</td>
<td>89.70us</td>
<td>177.00us</td>
<td>[CUDA memcpyHtoD]</td>
</tr>
<tr>
<td>1.00</td>
<td>189.64us</td>
<td>1</td>
<td>189.64us</td>
<td>189.64us</td>
<td>189.64us</td>
<td>CUDAkernelShortDCT(short*, int)</td>
</tr>
<tr>
<td>0.94</td>
<td>176.87us</td>
<td>1</td>
<td>176.87us</td>
<td>176.87us</td>
<td>176.87us</td>
<td>[CUDA memcpyHtoA]</td>
</tr>
<tr>
<td>0.92</td>
<td>174.16us</td>
<td>1</td>
<td>174.16us</td>
<td>174.16us</td>
<td>174.16us</td>
<td>CUDAkernelShortIDCT(short*, int)</td>
</tr>
<tr>
<td>0.76</td>
<td>143.31us</td>
<td>1</td>
<td>143.31us</td>
<td>143.31us</td>
<td>143.31us</td>
<td>CUDAkernelQuantizationShort(short*)</td>
</tr>
<tr>
<td>0.52</td>
<td>97.75us</td>
<td>1</td>
<td>97.75us</td>
<td>97.75us</td>
<td>97.75us</td>
<td>CUDAkernel2IDCT(float*, float*)</td>
</tr>
<tr>
<td>0.12</td>
<td>22.59us</td>
<td>1</td>
<td>22.59us</td>
<td>22.59us</td>
<td>22.59us</td>
<td>[CUDA memcpyDtoA]</td>
</tr>
</tbody>
</table>
```
nvprof trace mode

```
$ nvprof --print-gpu-trace dct8x8

======== Profiling result:

<table>
<thead>
<tr>
<th>Start</th>
<th>Duration</th>
<th>Grid Size</th>
<th>Block Size</th>
<th>Regs</th>
<th>SSMem</th>
<th>DSMem</th>
<th>Size</th>
<th>Throughput</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>167.82ms</td>
<td>176.84us</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.05MB</td>
<td>5.93GB/s</td>
<td>[CUDA memcpy HtoA]</td>
</tr>
<tr>
<td>168.00ms</td>
<td>708.51us</td>
<td>(64 64 1)</td>
<td>(8 8 1)</td>
<td>28</td>
<td>512B</td>
<td>0B</td>
<td>-</td>
<td>-</td>
<td>CUDAKernel1DCT(float*, ...)</td>
</tr>
<tr>
<td>168.95ms</td>
<td>708.51us</td>
<td>(64 64 1)</td>
<td>(8 8 1)</td>
<td>28</td>
<td>512B</td>
<td>0B</td>
<td>-</td>
<td>-</td>
<td>CUDAKernel1DCT(float*, ...)</td>
</tr>
<tr>
<td>169.74ms</td>
<td>708.26us</td>
<td>(64 64 1)</td>
<td>(8 8 1)</td>
<td>28</td>
<td>512B</td>
<td>0B</td>
<td>-</td>
<td>-</td>
<td>CUDAKernel1DCT(float*, ...)</td>
</tr>
<tr>
<td>170.53ms</td>
<td>707.89us</td>
<td>(64 64 1)</td>
<td>(8 8 1)</td>
<td>28</td>
<td>512B</td>
<td>0B</td>
<td>-</td>
<td>-</td>
<td>CUDAKernel1DCT(float*, ...)</td>
</tr>
<tr>
<td>171.32ms</td>
<td>708.12us</td>
<td>(64 64 1)</td>
<td>(8 8 1)</td>
<td>28</td>
<td>512B</td>
<td>0B</td>
<td>-</td>
<td>-</td>
<td>CUDAKernel1DCT(float*, ...)</td>
</tr>
<tr>
<td>172.11ms</td>
<td>708.05us</td>
<td>(64 64 1)</td>
<td>(8 8 1)</td>
<td>28</td>
<td>512B</td>
<td>0B</td>
<td>-</td>
<td>-</td>
<td>CUDAKernel1DCT(float*, ...)</td>
</tr>
<tr>
<td>172.89ms</td>
<td>708.38us</td>
<td>(64 64 1)</td>
<td>(8 8 1)</td>
<td>28</td>
<td>512B</td>
<td>0B</td>
<td>-</td>
<td>-</td>
<td>CUDAKernel1DCT(float*, ...)</td>
</tr>
<tr>
<td>173.68ms</td>
<td>708.31us</td>
<td>(64 64 1)</td>
<td>(8 8 1)</td>
<td>28</td>
<td>512B</td>
<td>0B</td>
<td>-</td>
<td>-</td>
<td>CUDAKernel1DCT(float*, ...)</td>
</tr>
<tr>
<td>174.47ms</td>
<td>708.15us</td>
<td>(64 64 1)</td>
<td>(8 8 1)</td>
<td>28</td>
<td>512B</td>
<td>0B</td>
<td>-</td>
<td>-</td>
<td>CUDAKernel1DCT(float*, ...)</td>
</tr>
<tr>
<td>175.26ms</td>
<td>707.95us</td>
<td>(64 64 1)</td>
<td>(8 8 1)</td>
<td>28</td>
<td>512B</td>
<td>0B</td>
<td>-</td>
<td>-</td>
<td>CUDAKernel1DCT(float*, ...)</td>
</tr>
<tr>
<td>176.05ms</td>
<td>173.87us</td>
<td>(64 64 1)</td>
<td>(8 8 1)</td>
<td>27</td>
<td>0B</td>
<td>0B</td>
<td>-</td>
<td>-</td>
<td>CUDAKernelQuantization (</td>
</tr>
<tr>
<td>176.23ms</td>
<td>22.82us</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.05MB</td>
<td>45.96GB/s</td>
<td>[CUDA memcpyDtoA]</td>
</tr>
</tbody>
</table>
```
Print individual kernel invocations and sort them in chronological order.

Print CUDA runtime/driver API trace.

```
$ nvprof --print-gpu_trace --print-api_trace dct8x8

================== Profiling result:==================
<table>
<thead>
<tr>
<th>Start</th>
<th>Duration</th>
<th>Grid Size</th>
<th>Block Size</th>
<th>Regs</th>
<th>SSMem</th>
<th>DSMem</th>
<th>Size</th>
<th>Throughput</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>167.82ms</td>
<td>176.84us</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.05MB</td>
<td>5.93GB/s</td>
<td>[CUDA memcpy HtoA]</td>
</tr>
<tr>
<td>167.81ms</td>
<td>2.00us</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>cudaSetupArgument</td>
</tr>
<tr>
<td>167.81ms</td>
<td>38.00us</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>cudaLaunch</td>
</tr>
<tr>
<td>167.85ms</td>
<td>1.00ms</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>cudaDeviceSynchronize</td>
</tr>
<tr>
<td>168.00ms</td>
<td>708.51us</td>
<td>(64 64 1)</td>
<td>(8 8 1)</td>
<td>28</td>
<td>512B</td>
<td>0B</td>
<td>-</td>
<td>-</td>
<td>CUDAkernel1DCT(float*, ...)</td>
</tr>
<tr>
<td>168.86ms</td>
<td>2.00us</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>cudaMemcpyCall</td>
</tr>
<tr>
<td>168.86ms</td>
<td>1.00us</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>cudaSetupArgument</td>
</tr>
<tr>
<td>168.86ms</td>
<td>1.00us</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>cudaSetupArgument</td>
</tr>
<tr>
<td>168.86ms</td>
<td>1.00us</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>cudaSetupArgument</td>
</tr>
<tr>
<td>168.87ms</td>
<td>0ns</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>cudaMemcpyCall</td>
</tr>
<tr>
<td>168.87ms</td>
<td>24.00us</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>cudaLaunch</td>
</tr>
<tr>
<td>168.89ms</td>
<td>761.00us</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>cudaDeviceSynchronize</td>
</tr>
<tr>
<td>168.95ms</td>
<td>708.51us</td>
<td>(64 64 1)</td>
<td>(8 8 1)</td>
<td>28</td>
<td>512B</td>
<td>0B</td>
<td>-</td>
<td>-</td>
<td>CUDAkernel1DCT(float*, ...)</td>
</tr>
</tbody>
</table>
```
nvcc --devices 0 --query-events ./a.out

- Gives very useful information, such as:
 - number of global memory loads, stores, ...
 - number of global memory coalesced
 - branch divergences
 - ...

- You must specify the event:

 $ nvprof --devices 0 --events branch,divergent_branch dct8x8
Conclusions

- There are many performance enhancement techniques in our arsenal:
 - Alignment
 - Streams
 - Pinned pages
 - Texture memory
 - Asynchronous execution
- If your program is making use of a lot of FP operations, be careful about rounding errors.
- There are tools to help you!