Whenever calculations are needed to solve a problem, those calculations must be submitted as part of the homework assignment.

Exercise 3.1. Consider the linear equality constraints $Ax = b$ and the vector \tilde{x}:

$$A = \begin{pmatrix} 3 & -4 & 6 & -1 & 7 \\ 2 & 2 & -3 & 4 & -1 \end{pmatrix}, \quad b = \begin{pmatrix} -40 \\ 7 \end{pmatrix}, \quad \text{and} \quad \tilde{x} = (-3, 3, -2, 0, -1)^T.$$

Let $c = (-11, -4, 6, -15, -3)^T$ and $d = (1, 1, 1, 1)^T$.

(a) Show (via computation) that \tilde{x} is feasible.

(b) Find any feasible point \bar{x} such that $\bar{x} \neq \tilde{x}$ and explain how you found \bar{x}.

(c) Consider the problem of minimizing $\ell_c(x) = c^Tx$ subject to $Ax = b$.

(i) Is \tilde{x} optimal for this problem?

(ii) If “yes”, explain why. In this case, also explain whether \tilde{x} is the unique minimizer, and whether or not the optimal value of ℓ_c is unique.

(iii) If \tilde{x} is not optimal, explain why it is not. In this case, find a direction p such that $A p = 0$ and $c^T p < 0$ (and explain how you found p).

(d) Now consider the problem of minimizing $\ell_d(x) = d^Tx$ subject to $Ax = b$.

(i) Is \tilde{x} optimal for this problem?

(ii) If “yes”, explain why. In this case, also explain whether \tilde{x} is the unique minimizer, and whether or not the optimal value of ℓ_d is unique.

(iii) If \tilde{x} is not optimal, explain why it is not, and find a direction p such that $A p = 0$ and $d^T p < 0$. (Please explain how you found p.)

Exercise 3.2. Let A be a nonzero $m \times n$ matrix, where $m > 0$ and $n > 0$. Assume that a is an n-vector that is linearly independent of the rows of A. Let e_{m+1} denote the $(m+1)$-th coordinate vector, and let \tilde{A} denote the $(m+1) \times n$ matrix

$$\tilde{A} = \begin{pmatrix} A \\ a^T \end{pmatrix}.$$

Show that there must be a vector p such that $\tilde{A} p = e_{m+1}$, i.e., such that the equation $\tilde{A} p = e_{m+1}$ is compatible.

Exercise 3.3. Consider a hyperplane $d^T x = \beta$, where $x \in \mathbb{R}^n$, $d \in \mathbb{R}^n$, $d \neq 0$, and β is a positive scalar. Find the n-vector x^* of smallest two-norm that lies on the hyperplane, i.e. such that $\|x^*\|_2 \leq \|x\|_2$ among all x satisfying $d^T x = \beta$. Explain how you found x^* and show that it is optimal. What is $\|x^*\|_2$?
Exercise 3.4. Let \(d \) denote a nonzero vector in \(\mathbb{R}^n \) and let \(\beta \) be a positive scalar. Consider the constraints \(d^T x \geq \beta \) and \(x \geq 0 \), and assume that feasible points exist. Write down the solution to the linear program of minimizing \(e^T x \) subject to these constraints, where \(e \) is the \(n \)-vector of all ones (so that \(e^T x \) is the sum of the \(n \) components of \(x \)). Is the optimal \(x \) unique? Explain.

Exercise 3.5. Let \(A \) be an \(m \times n \) matrix.
(a) Show that if \(b \) is an \(m \)-vector such that \(b_i \leq 0 \) for \(i = 1, \ldots, m \), then at least one feasible point must exist for the combined constraints \(Ax \geq b \) and \(x \geq 0 \). Is the result true for a general vector \(b \)? Explain why or why not.
(b) Consider the constraints \(Ax \geq b \) and \(x \geq 0 \) for a general vector \(b \), and assume that a feasible point exists. Must a vertex exist? Explain why or why not.

Exercise 3.6. Let \(A \) be a nonzero \(m \times n \) matrix and \(c \) an \(n \)-vector.
(a) If \(c = A^T \lambda \) for some \(\lambda \geq 0 \), show that \(c^T p \geq 0 \) for all \(p \) such that \(Ap \geq 0 \).
(b) If \(c \neq A^T \lambda \) for any \(\lambda \), show that there exists \(p \) such that \(c^T p < 0 \) and \(Ap \geq 0 \).

Exercise 3.7. Consider the linear program of minimizing \(c^T x \) subject to \(Ax \geq b \), where \(A \) is \(m \times n \). Assume that \(x^* \) is a nondegenerate vertex and let \(\bar{A} \) denote the active-constraint matrix at \(x^* \). Assuming that
\[
c = \bar{A}^T \bar{\lambda} \quad \text{and} \quad \bar{\lambda} \geq 0,
\]
but \(\bar{\lambda}_i = 0 \) for at least one index \(i \) (i.e. at least one component of \(\bar{\lambda} \) is zero), prove that \(x^* \) is not the unique solution of the linear program.

Exercise 3.8. Consider the two constraints \(x_1 - x_2 \geq 0 \) and \(x_1 + 2x_2 \leq 6 \), which intersect at \(\bar{x} = (2, 2)^T \). Suppose that we wish to add a third constraint, \(\alpha x_1 + x_2 \geq \gamma \), with \(\alpha \geq 0 \).
(a) Given a specific value of \(\alpha \), what must be the value of \(\gamma \) to ensure that the new constraint intersects the first two constraints at \(\bar{x} \)?
(b) With \(\gamma \) taken as the value determined in part (a), analyze the role of \(\alpha \) in the existence or nonexistence of feasible directions at \(\bar{x} \) with respect to all three constraints. Can you find \(\alpha_1 \geq 0 \) such that feasible directions with respect to all three constraints exist if \(\alpha \geq \alpha_1 \) but no such feasible directions exist if \(0 \leq \alpha < \alpha_1 \)? Explain your answer.