CSCI-GA.3033-008
Graphics Processing Units (GPUs): Architecture and Programming

Lecture 9: Multi-GPU Systems & Heterogeneous Systems

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com
Tianhe-2: #1 in Top500 (June 2013)

- 16,000 computer nodes
- each comprising two Intel Ivy Bridge Xeon processors and three Xeon Phi chips
- for a total of 3,120,000 cores
Nebulae: #10 in Top 500 list (June 2012)

Intel Xeon X5650 and Nvidia GPU Tesla c2050
Tsubame 2.0: #5 in Top 500 list

Intel Xeon X5670 and Nvidia GPU
From the Nov 2011 Top500 supercomputers

• From the top 5: 3 are using GPUs
• A total of 39 systems on the list are using GPU technology (up from 17 in the previous list)
• 35 of these use NVIDIA chips, two use Cell processors, and two use ATI Radeon
Flavors

- Multiple GPUs in the same node (e.g. PC)
- Multi-node system (e.g. MPI).

Multi-GPU configuration is here to stay!
Hardware Example: Tesla S870 Server
Hardware Example: Tesla S870 Server

Host System w/ 2 PCIe slots

Connected to a single-host
Hardware Example: Tesla S870 Server

Host System w/ 1 PCIe slot

Tesla S870

Host System w/ 1 PCIe slot

Connected to a two host systems
Why Multi-GPU Solutions

• Scaling-up performance
• Another level of parallelism
• Power
• Reliability
// Run independent kernel on each CUDA device
int numDevs = 0;
cudaGetNumDevices(&numDevs);

... for (int d = 0; d < numDevs; d++) {
 cudaSetDevice(d);
 kernel<<<blocks, threads>>>(args);
}
CUDA Support

• cudaGetDeviceCount(int * count)
 – Returns in *count the number of devices

• cudaGetDevice(int * device)
 – Returns in *device the device on which the active host thread executes the device code.
CUDA Support

• `cudaSetDevice(devID)`

 – Device selection within the code by specifying the identifier and making CUDA kernels run on the selected GPU.

```c
size_t size = 1024 * sizeof(float);
cudaSetDevice(0); // Set device 0 as current
float* p0;
cudaMalloc(&p0, size); // Allocate memory on device 0
MyKernel<<<1000, 128>>>(p0); // Launch kernel on device 0
cudaSetDevice(1); // Set device 1 as current
float* p1;
cudaMalloc(&p1, size); // Allocate memory on device 1
MyKernel<<<1000, 128>>>(p1); // Launch kernel on device 1
```
CUDA Support: Peer to peer memory Access

- Peer-to-Peer Memory Access
 - Only on Tesla or above
 - `cudaDeviceEnablePeerAccess()` to check peer access

```c
cudaSetDevice(0); // Set device 0 as current
float* p0;
size_t size = 1024 * sizeof(float);
cudaMalloc(&p0, size); // Allocate memory on device 0
MyKernel<<<1000, 128>>>(p0); // Launch kernel on device 0
cudaSetDevice(1); // Set device 1 as current
cudaDeviceEnablePeerAccess(0, 0); // Enable peer-to-peer access with device 0

// Launch kernel on device 1
// This kernel launch can access memory on device 0 at address p0
MyKernel<<<1000, 128>>>(p0);
```
cudaError_t cudaDeviceEnablePeerAccess (int peerDevice, unsigned int flags)

Access granted by this call is unidirectional (i.e. current device can access peer device)
CUDA Support

Peer to peer memory Copy

• Using cudaMemcpyPeer()
 – works for Geforce 480 and other GPUs.

```c
cudaSetDevice(0); // Set device 0 as current
float* p0;
size_t size = 1024 * sizeof(float);
cudaMalloc(&p0, size); // Allocate memory on device 0
cudaSetDevice(1); // Set device 1 as current
float* p1;
cudaMalloc(&p1, size); // Allocate memory on device 1
cudaSetDevice(0); // Set device 0 as current
MyKernel<<<1000, 128>>>(p0); // Launch kernel on device 0
cudaSetDevice(1); // Set device 1 as current
cudaMemcpyPeer(p1, 1, p0, 0, size); // Copy p0 to p1
MyKernel<<<1000, 128>>>(p1); // Launch kernel on device 1
```
cudaMemcpyPeer (void * dst,
 int dstDevice,
 const void * src,
 int srcDevice,
 size_t count)

• This function is asynchronous with respect to the host.
• This function is serialized with respect to all pending and future asynchronous work into the current device.
Unified Virtual Address Space (UVA)

- From CUDA 4.0
- puts all CUDA execution, CPU and GPU, in the same address space
- Requires Fermi-class GPU
- Requires 64-bit application
- Call `cudaGetDeviceProperties()` for all participating devices and check `cudaDeviceProp::unifiedAddressing` flag
Unified Virtual Addressing
Easier to Program with Single Address Space

No UVA: Multiple Memory Spaces

UVA: Single Address Space
GPUDirect

• Build on UVA for Tesla (Fermi) products.
GPUDirect v2.0: Peer-to-Peer Communication

Direct Transfers b/w GPUs
Easier Memory Copy

• Between host and multiple devices:
cudaMemcpy(gpu0_buf, host_buf, buf_size, cudaMemcpyDefault)
cudaMemcpy(gpu1_buf, host_buf, buf_size, cudaMemcpyDefault)
cudaMemcpy(host_buf, gpu0_buf, buf_size, cudaMemcpyDefault)
cudaMemcpy(host_buf, gpu1_buf, buf_size, cudaMemcpyDefault)

• Between two devices:
cudaMemcpy(gpu0_buf, gpu1_buf, buf_size, cudaMemcpyDefault)

• cudaMemcpy() knows that our buffers are on different devices
• (UVA), will do a P2P copy
• Note that this will transparently fall back to a normal copy through the host if P2P is not available
Example: Direct N-Body

- Simulation of dynamical system of N-bodies
- \(O(N^2) \)
- Compute-Bound application
- Assume we have \(K \) GPUs
 - So each GPU is responsible for \(N/K \) bodies
- For each iteration:
 - Get all \(N \) up-to-date positions onto each GPU
 - Compute accelerations -\(N/k \) per GPU
 - Integrate position, velocity -\(N/k \) per GPU
Example: Direct N-Body

- Sharing data among GPUs: options
 - Explicit copies via host
 - Zero-copy shared host array
 (cudaMallocHost())
 - Per-device arrays with peer-to-peer exchange transfers
 - Peer-to-peer memory access
Example:
Direct N-Body

- Sharing data among GPUs: options
 - Explicit copies via host
 - Zero-copy shared host array
 (cudaMallocHost()): use it when:
 - You copy data to the device and access it there only once AND/OR
 - You generate data on the device and copy back to host without reuse AND/OR
 - Your kernel(s) that access the memory are compute bound
 - Per-device peer-to-peer exchange transfers (UVA)
 - Peer-to-peer memory access
Example: Direct N-Body

• Sharing data among GPUs: options
 – Explicit copies via host
 – Zero-copy shared host array
 (cudaMallocHost())
 – Per-device peer-to-peer exchange transfers
 • UVA as we have seen
 • Non-UVA:
 – cudaMemcpyPeer()
 – Copies memory from one device to memory on another device
 – Peer-to-peer memory access
Example: Direct N-Body

• Sharing data among GPUs: options
 – Explicit copies via host
 – Zero-copy shared host array
 (cudaMallocHost())
 – Per-device peer-to-peer exchange transfers
 – Peer-to-peer memory access
 • Pass pointer to memory on device A to kernel running on device B
 • Requires UVA
 • Must first enable peer access for every pair:
 • cudaDeviceEnablePeerAccess
Example: Direct N-Body

Using zero-copy from host memory
Issues

• How to decompose your problem?
• Several copies versus data movement
• Dealing with multithreaded applications on CPU
• Coherence
• Homogeneous versus heterogeneous GPUs
How About Heterogeneous systems?

- Cores and GPUs on the same chip
- Wide variety of software applications
- Application with fewer and sophisticated threads → Traditional multicore with latency optimize cores
- Application with high concurrency → large number of throughput optimized cores or GPU
- Energy efficiency
- Heterogeneous computing is needed to reach ExaScale computing
EXAMPLE OF HETEROGENEOUS SYSTEM
INTEL: SANDY BRIDGE
Sandy Bridge

• Intel Tock
 – Intel’s first processor with GPU on the processor itself.

• Improvement over its predecessor Nehalem

• Targeting multimedia applications
 – Introduced Advanced Vector Extensions (AVX)

• More power-efficient than Westmere
• The GPU can access the large L3 cache
• Intel’s team totally re-designed the GPU
Conclusions

• Multi-GPU system is an efficient way to reach higher performance
• GPUs have several ways of exchanging information among themselves
• Performance gain is application-dependent and programmer-dependent!