CSCI-GA.3033-008
Graphics Processing Units (GPUs):
Architecture and Programming

Lecture 12: What’s Next: Software

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com
This Lecture

• Computational Thinking!
• Tools
• Libraries
• State-of-the-art and future applications
Computational Thinking 101

Computational Thinking is arguably the most important aspect of parallel Application development!
J. Wing Communications of the ACM, 49(3), 2006

What is it?
Decomposing a domain problem into well-defined, coordinated work units that can Each be realized with different numerical methods and well-known algorithms.
Why Do We Need Parallel Computing in the First place?

To solve a given problem in less time

To solve bigger problems

To achieve better solutions for a given problem and a given amount of time

Increased Speed!
Applications that are good candidates for parallel computing:

- Involve large problem sizes
- Involve high modeling complexity

Formulating the problem is crucial!!

The problem must be formulated in such a way that it can be decomposed into subproblems that can be executed at the same time.
The Process of Parallel Programming

• Problem decomposition
• Algorithm selection
• Implementation in a language
• Performance tuning

This is what we have been doing till now!
Problem Decomposition

Identify the work to be performed by each unit of parallel execution → thread in CUDA
Problem Decomposition: Thread Arrangement

Example: Electrostatic Map Problem

Atom-centric: each thread responsible for calculating the effect of one atom on all grid points \(\rightarrow\) Scatter

Grid-centric: each thread calculates the effect of all atoms on a grid point \(\rightarrow\) Gather
Problem Decomposition

- Picking the best thread arrangement requires the understanding of the underlying hardware.
- A real application consists of several modules that work together
 - Amount of work per module can vary dramatically
 - You need to decide if a module is worth implementing in CUDA
- Amdahl’s law
Algorithm Selection

• An algorithm must exhibit three essential properties:
 – definiteness = no ambiguity
 – effective computability = each step can be carried by a computer
 – finiteness = guaranteed to terminate

• When comparing several algorithms, take the following factors into account:
 – Steps of computation
 – Degree of parallel execution
 – Numerical stability
 – Memory bandwidth
Skills needed to go from: Parallel Programmer to: Computational Thinker

- Computer Architecture
- Programming models and compilers
- Algorithm techniques: (e.g. tiling)
- Domain knowledge
Tools

https://developer.nvidia.com/

- Almost all tools are available for free
- Many of them are cross-platform
CUDA-GDB

• Compile your program with:

`nvcc -G -g yourprog.cu -o anyname`

 – The -g option tells nvcc to generate debugging information for the host code
 – The -G option generates debugging information for the CUDA kernels

• Start with: `cuda-gdb anyname`

• You will get the prompt: `$(cuda-gdb)`
CUDA-GDB

- $(cuda\text{-}gdb)\ l\ 60$
 - lists the code around line 60
- $(cuda\text{-}gdb)\ b\ 60$
 - puts a breakpoint at line 60
- $(cuda\text{-}gdb)\ b\ mykernel$
 - puts a breakpoint at kernel mykernel
- $(cuda\text{-}gdb)\ r$
 - runs the program
CUDA-GDB

- $(\text{cuda-gdb}) \text{ n}$
 - runs the next line of the program
 - Important: The debugger supports stepping GPU code at the granularity of a warp.
- $(\text{cuda-gdb}) \text{ c}$
 - continues execution till the next breakpoint
- $(\text{cuda-gdb}) \text{ p }^*\text{v_d}@10$
 - Print the first 10 elements of array v_d
- $(\text{cuda-gdb}) \text{ info cuda threads}$
 - print the thread and block numbers at current kernel in the form $<<(BX,BY),(TX,TY,TZ)>>$
- $(\text{cuda-gdb}) \text{ thread }<<(31),(255)>>$
 - switch to that thread in case you want to print info about it.
- $(\text{cuda-gdb}) \text{ quit}$
PGI CUDA C/C++ for x86

- compiler for x86 platforms
- allows developers using CUDA to compile and optimize their CUDA applications to run on x86-based workstations
- with or without an NVIDIA GPU
- When no NVIDIA GPU exists, PGI CUDA C uses multiple cores and the streaming SIMD capabilities of Intel and AMD CPUs
CUDA Libraries

• CUDA provides a set of very useful libraries.
• This increases the programmer productivity.
CUDA Libraries: CUBLAS

- Cuda Based Linear Algebra Subroutines
 - Saxpy, conjugate gradient, linear solvers, ...
- Single GPU or Multiple GPUs
- Support CUDA Stream
- Basic preparation
 - Install CUDA Toolkit
 - Include cublas_v2.h
 - Link cublas.lib
CUDA Libraries: CUBLAS

• Some basic tips
 – Every CUBLAS function needs a handle
 – The CUBLAS function must be written between `cublasCreate()` and `cublasDestroy()`
 – Every CUBLAS function returns a `cublasStatus_t` to report the state of execution.
 – Column-major storage
CUDA Libraries: CUBLAS

Single precision data:
- Level 1 (vector-vector $O(N)$)
- Level 2 (matrix-vector $O(N^2)$)
- Level 3 (matrix-matrix $O(N^3)$)

Complex single precision data:
- Level 1
- CGEMM

Double precision data:
- Level 1: DASUM, DAXPY, DCOPY, DDOT, DNRMS2, DROT, DROTM, DSCAL, DSWAP, ISAMAX, IDAMIN
- Level 2: DGEMV, DGER, DSYR, DTRSV
- Level 3: ZGEMM, DGEMM, DTRSM, DTRMM, DSYMM, DSYRK, DSYR2K
CUDA Libraries: CUFFT

• Cuda Based Fast Fourier Transform Library.
• The FFT is a divide-and-conquer algorithm
• Computes FFT on Nvidia CUDA
• 1D, 2D, and 3D
• The CUFFT library is freely available as part of the CUDA Toolkit
• #include<cufft.h>
For sparse matrices

a C++ template library for CUDA
based on the Standard Template Library
GPUs in Real Life
"Harvard Middle Eastern Studies student Todd Mostak's first tangle with big data didn't go well; trying to process and map 40 million geolocated tweets from the Arab Spring uprising took days. So while taking a database course across town at MIT, he developed a massively parallel database that uses GeForce Titan GPUs to do the data processing. The system sees 70x performance increases over CPU-based systems, and can out crunch a 1000 node MapReduce cluster, in some cases. All for around $5,000 worth of hardware. Mostak plans to release the system under an open source license; you can play with a data set of 125 million tweets hosted at Harvard's WorldMap and see the millisecond response time.

Source: Slashdot, April 22nd, 2013
http://slashdot.org/story/13/04/22/2225240/harvardmit-student-creates-gpu-database-hacker-style
Map-D, a startup based in Cambridge, Mass., has built a high-speed GPU in-memory database and geospatial visualization tool that can track more than a billion tweets worldwide - and provide real-time interactive visual analysis of an almost boundless number of socio-economic queries.

Source:
How Can GPUs Help With Databases?

• Sorting
• Accelerating SQL

MapReduce and GPUs

• MapReduce Programming Model
 - Emerged with the development of Data-Intensive Computing
 - Pioneered by Google
 - Map()
 • Generates a large number of (key, value) pairs
 - Reduce()
 • Merges the values associated with the same key
Example: Distributed Grep

Very big data

Split data → grep → matches

→ cat → All matches
Example: Distributed Word Count

Very big data

Split data → count → count → count → merge → merged count
So: Map+Reduce

Very big data

- **Map:**
 - Accepts *input* key/value pair
 - Emits *intermediate* key/value pair

- **Reduce:**
 - Accepts *intermediate* key/value* pair
 - Emits *output* key/value pair

How can GPU help in this?
GPUs in Supercomputers

- Strongest supercomputers now are based on GPUs
- No shared memory → MPI is the way to go
- Nodes connected by sophisticated interconnection
- Can we combine CUDA and MPI?
Blue Waters Computing System

- Sonexion: 26 PBs, >1 TB/sec
- Spectra Logic: 300 PBs, 120+ Gb/sec
- 10/40/100 Gb Ethernet Switch, 100 GB/sec
- WAN
- IB Switch, >1 TB/sec

Spectra Logic: 300 PBs

Sonexion: 26 PBs
Blue Waters and Titan Computing Systems

<table>
<thead>
<tr>
<th>System Attribute</th>
<th>NCSA Blue Waters</th>
<th>ORNL Titan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendors</td>
<td>Cray/AMD/NVIDIA</td>
<td>Cray/AMD/NVIDIA</td>
</tr>
<tr>
<td>Processors</td>
<td>Interlagos/Kepler</td>
<td>Interlagos/Kepler</td>
</tr>
<tr>
<td>Total Peak Performance (PF)</td>
<td>11.1</td>
<td>27.1</td>
</tr>
<tr>
<td>Total Peak Performance (CPU/GPU)</td>
<td>7.1/4</td>
<td>2.6/24.5</td>
</tr>
<tr>
<td>Number of CPU Chips</td>
<td>48,352</td>
<td>18,688</td>
</tr>
<tr>
<td>Number of GPU Chips</td>
<td>3,072</td>
<td>18,688</td>
</tr>
<tr>
<td>Amount of CPU Memory (TB)</td>
<td>1511</td>
<td>584</td>
</tr>
<tr>
<td>Interconnect</td>
<td>3D Torus</td>
<td>3D Torus</td>
</tr>
<tr>
<td>Amount of On-line Disk Storage (PB)</td>
<td>26</td>
<td>13.6</td>
</tr>
<tr>
<td>Sustained Disk Transfer (TB/sec)</td>
<td>>1</td>
<td>0.4-0.7</td>
</tr>
<tr>
<td>Amount of Archival Storage</td>
<td>300</td>
<td>15-30</td>
</tr>
<tr>
<td>Sustained Tape Transfer (GB/sec)</td>
<td>100</td>
<td>7</td>
</tr>
</tbody>
</table>
CUDA-based cluster

- Each node contains N GPUs
MPI Model

- Many processes distributed in a cluster
- Each process computes part of the output
- Processes communicate with each other
- Processes can synchronize
MPI Sending Data

- `int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)`
 - **Buf**: Initial address of send buffer (choice)
 - **Count**: Number of elements in send buffer (nonnegative integer)
 - **Datatype**: Datatype of each send buffer element (handle)
 - **Dest**: Rank of destination (integer)
 - **Tag**: Message tag (integer)
 - **Comm**: Communicator (handle)
MPI Receiving Data

- `int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Status *status)`
 - **Buf**: Initial address of receive buffer (choice)
 - **Count**: Maximum number of elements in receive buffer (integer)
 - **Datatype**: Datatype of each receive buffer element (handle)
 - **Source**: Rank of source (integer)
 - **Tag**: Message tag (integer)
 - **Comm**: Communicator (handle)
 - **Status**: Status object (Status)
MPI + CUDA: The Easy Way

• Cuda and MPI can be considered separate entities
 – CUDA handles parallelization on GPU
 – MPI handles parallelization over nodes

• Use one MPI process per GPU and accelerate the computational kernels with CUDA
MPI + CUDA: The Hard Part

• **Technology is moving forward quickly**
 – Different compute capability generations
 – Different levels of support for GPUDirect
 – New MPI libraries with CUDA support are emerging

• **Machines differ from each other**
 – Number of GPUs and CPUs per node differ
 • 1 GPU per 2 processors to 8 GPUs per 2 processors
 • Selecting active GPU on multi GPU nodes

• **Scalability**
Scalability across GPU/CPU cluster nodes
(big hybrid supercomputers are coming)

Oak Ridge National Laboratory looks to NVIDIA “Fermi” architecture for new supercomputer

NERSC experimental GPU cluster: Dirac

EMSL experimental GPU cluster: Barracuda

Cuda IB cluster speedup with two-GPUs per node
(courtesy NVIDIA Corp)
GPU in Finance

• Why? Opportunity & Risk!
 – Opportunity: doing things faster \rightarrow better \rightarrow more opportunities
 – Risk: market risk analysis

• Real time

• Relative to multicore: GPU is easier better or cheaper!
GPU in Finance

• Example of applications:
 – Pricing
 – Trading strategy
 – Risk analysis
 – Data visualization
 – High-frequency trading
 – Data mining

• Monte Carlo → Library CUDA THRUST
Conclusions

• Computational thinking is an art but a very crucial one.
• There are now wrappers of CUDA for many languages: Python, Java, C++, Matlab, ...
• GPUs are gaining territory as new applications arise!