Problem 1

Euler’s sieve is a souped-up version of the sieve of Eratosthenes, which finds the prime numbers. It works as follows

\[
\begin{align*}
L &= \text{the list of numbers from 2 to } N; \\
P &= 2; /* \text{The first prime */} \\
\text{while (}P^2 < N\text{) \{ \\
& \quad L1 = \text{the list of all } X \text{ in } L \text{ such that } P \leq X \leq N/P. \\
& \quad L2 = P*LI; \\
& \quad \text{delete everything in } L2 \text{ from } L; \\
& \quad P = \text{the next value after } P \text{ in } L; \\
& \}} \\
\text{return } L;
\end{align*}
\]

For instance, for \(N=27\), successive iterations proceed as follows:

Initialization
\[
L = [2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17 \ 18 \ 19 \ 20 \ 21 \ 22 \ 23 \ 24 \ 25 \ 26 \ 27] \\
P = 2
\]

First iteration
\[
L1 = [2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13] \\
L2 = [4 \ 6 \ 8 \ 10 \ 12 \ 14 \ 16 \ 18 \ 20 \ 22 \ 24 \ 26] \\
L = [2 \ 3 \ 5 \ 7 \ 9 \ 11 \ 13 \ 15 \ 17 \ 19 \ 21 \ 23 \ 25 \ 27] \\
P = 3
\]

Second iteration
\[
L1 = [3 \ 5 \ 7 \ 9] \\
L2 = [9 \ 15 \ 21 \ 27] \\
L = [2 \ 3 \ 5 \ 7 \ 11 \ 13 \ 17 \ 19 \ 23 \ 25] \\
P = 5
\]

Third iteration
\[
L1 = [5] \\
L2 = [25] \\
L = [2 \ 3 \ 5 \ 7 \ 11 \ 13 \ 17 \ 19 \ 23]
\]

A. Write a MATLAB function \texttt{EulerSieve1(N)} which constructs the Euler sieve, implementing \(L, L1, L2\) as arrays of integers, as above.

B. Write a MATLAB function \texttt{EulerSieve2(N)} which constructs the Euler sieve, implementing \(L, L1,\) and \(L2\) as Boolean arrays, where \(L[I] = 1\) if \(I\) is currently in the set \(L\). Thus, the final value returned in the above example would be the array

\[
[0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0]
\]
Problem 2:

There is a theorem that states that, if you carry out the following procedure:

\[P = \text{any polygon (this can be concave or even cross itself).} \]

\[\text{loop } \{
 \text{compute the midpoint of each side of } P

 P = \text{the polygon formed by connecting these midpoints in sequence;}
\} \]

Then \(P \) will converge toward a series of points that lie on an ellipse. (Picture on next page. Note: Because of the symmetry in this particular case, two of the points collapse into one, and the figure becomes a perfect rectangle, but neither of this happens in general.)

A. Assume that \(P \) is represented as a \(2 \times n \) matrix, where each column is the coordinates of one vertex of \(P \). For example, the polygon with vertices at \((0,0), (2,8), (4,0), (-2,6), (6,6)\) would be represented as the array,

\[
\begin{bmatrix}
0 & 2 & 4 & -2 & 6 \\
0 & 8 & 0 & 6 & 6
\end{bmatrix}
\]

Write a MATLAB function `ConnectMidpoints(P)` that, given a polygon \(P \) constructs the polygon that results from connecting the midpoints of \(P \) in sequence. For instance if \(P \) is the matrix above then `ConnectMidpoints(P)` would return the array

\[
Q = \begin{bmatrix}
1 & 3 & 1 & 2 & 3 \\
4 & 4 & 3 & 6 & 3
\end{bmatrix}
\]

Each column of \(Q \) is constructed by taking the average of two consecutive columns of \(P \) and dividing by 2; e.g. \(Q[:,1] = 1/2(P[:,1]+P[:,2]) \). The last column of \(Q \) is the average of the last and first column of \(P \); i.e. \(Q[:,1] = 1/2(P[:,5]+P[:,1]) \).

Your code should of course work for polygons with any number of points, not just polygons with 5 points.

B. Write a MATLAB function `ConvergingPolygons(P,N)`, which takes as input a polygon \(P \) and a number \(N \) and draws pictures of the first \(N \) polygons in this sequence, starting with \(P \). Let MATLAB adjust the scale on each successive picture, or the picture will soon become too small to see. Also, as always with geometric drawings in Matlab, call `axis equal` to make sure that the x and y axes have the same scale.

(Your pictures, produced by MATLAB, will not look exactly like the picture on the next page, which was drawn with a line-drawing program.)
1st iteration

2nd iteration

3rd iteration

4th iteration