1. Exercise 16.3-3 on p. 436 of CLRS.

2. Problem 16-1 on p. 446 of CLRS.

3. Consider a k-digit decimal counter, with initial value 0. Suppose that n additions to the counter of numbers of the form 10^i are performed (i.e., each of the n addition operations specifies an exponent i between 0 and $k - 1$). Results are to be computed modulo 10^k, in case of overflow. Using the accounting method or a potential function argument, show that the total number of digits that change is at most $\frac{10}{9}n$.

4. Show how to implement a queue with two ordinary stacks, so that the amortized cost of each enqueue and dequeue operation is $O(1)$. Use either the accounting method or a potential function argument.

5. Design a data structure and algorithms to support the following two operations for a dynamic multiset S of numbers (duplicates allowed): $\text{insert}(S, x)$: insert x into S; $\text{deleteLargerHalf}(S)$ deletes the largest $\lceil |S|/2 \rceil$ elements from S. The amortized cost of each operation should be $O(1)$. Your algorithm should be comparison based: the only operations performed on the numbers in S are comparisons. Use either the accounting method or a potential function argument.

6. **Honor’s exercise.** Problem 17-2, parts a and b only, on p. 473 of CLRS.