Graphs

\[G = (V, E), \ V = \text{set of nodes (a.k.a., vertices)} \ E = \text{set of edges} \]

\(G \) is usually assumed to be \textbf{directed}, so that an edge is a pair of nodes \((u, v)\) (graphically, \(u \rightarrow v\))

If \((u, v) \in E\), let’s call \(v\) a \textbf{successor} of \(u\), and \(u\) a \textbf{predecessor} of \(v\)

\textit{Successor}(u) := \text{set of all successors of } u

An \textbf{undirected} graph is just a special case of a directed graph, where \((u, v) \in E \Rightarrow (v, u) \in E\)

One usually assumes an undirected graph contains no \textbf{self loops}, i.e., edges \((u, u)\)
Representations

- **Sparse**: an array of adjacency lists

an array A indexed by V, where $A[u]$ is a linked list containing all successors of u

 size: $O(|V| + |E|)$

 this will be the “default”

- **Dense**: an boolean array A indexed by $V \times V$, where $A[u, v] = true$ iff $(u, v) \in E$

 size: $O(|V|^2)$
Breadth first search (BFS)

Input: a graph $G = (V, E)$, and a node $s \in V$

Outputs:

- the “shortest distance” array d, indexed by V, so that $d[v] =$ length of shortest path from s to v
- a “breadth first search” tree T, represented as an array π indexed by V
 \[\pi[v] = u \] means u is v’s parent in T

the root T is s, and paths in T are shortest paths in G
Algorithm \textit{BFS}(G, s):

for each \(v \in V \)

\begin{align*}
\text{Color}[v] &\leftarrow \text{white} \quad // \text{undiscovered} \\
\text{d}[v] &\leftarrow \infty, \pi[v] \leftarrow \text{Nil}
\end{align*}

\text{Color}[s] \leftarrow \text{gray} \quad // \text{discovered}

\text{d}[s] \leftarrow 0, \pi[s] \leftarrow \text{Nil}

Q \leftarrow \text{NewQueue()} \quad // \text{a FIFO queue}

Q.\text{enqueue}(s)

while not Q.\text{empty}() do

\begin{align*}
 u &\leftarrow Q.\text{dequeue}() \\
 \text{for each } v \in \text{Successor}(u) \text{ do}
 \quad \text{if Color}[v] = \text{white} \text{ then}
 \quad \text{Color}[v] \leftarrow \text{gray} \quad // \text{discovered}
 \quad \text{d}[v] \leftarrow \text{d}[u] + 1, \pi[v] \leftarrow u
 \quad Q.\text{enqueue}(v)
 \text{Color}[u] \leftarrow \text{black} \quad // \text{finished}
\end{align*}
Example:

BFS Tree:
Running time:

- Each node enqueued at most once (by coloring)
- Each node dequeued at most
- Each adjacency list scanned at most once
- \(\therefore \) Running time = \(O(|V| + |E|) \)

Invariant:

- At the beginning of each loop iteration, \(Q \) contains all nodes that are colored gray.
Correctness

Notation: \(d[\nu] = \text{computed distance} \)
\[\delta(s, \nu) = \text{length of shortest path from } s \text{ to } \nu \]

Shortest Path Lemma

If \(\delta(s, \nu) = m > 0 \), then \(\nu \) is the successor of some node \(u \) with \(\delta(s, u) = m - 1 \)

Proof:

- Consider a shortest path from \(s \) to \(\nu \):
 \[
 \begin{align*}
 S & \rightarrow u \rightarrow \nu \\
 m-1 & \hspace{1cm} \hspace{1cm} m
 \end{align*}
 \]

- The path \(s \rightarrow u \) must be a shortest path from \(s \) to \(u \) (otherwise, we could find an even shorter path to \(\nu \)). QED
Theorem

Algorithm BFS eventually discovers every node reachable from s

Prove by induction on m:

for all $v \in V$, if $\delta(s, v) = m$, then BFS discovers v

$m = 0$: clear; $m > 0$:

- Suppose $v \in V$ with $\delta(s, v) = m$
- By Shortest Path Lemma, v has a predecessor u with $\delta(s, u) = m - 1$
- By induction, BFS discovered u, and placed u in Q
- When BFS removes u from Q, it discovers v (or finds that it was already discovered)
Theorem

BFS correctly computes \(d[\nu] = \delta(s, \nu) \) for all \(\nu \in V \)

Proof:

- Let \(\nu_0, \nu_1, \ldots \) be the nodes listed in the order they are removed from \(Q \)
- We can partition the execution of BFS into epochs \(0, 1, 2, \ldots \)

\[\begin{align*}
\nu_0, \ldots, \nu_{j_0}, & \quad \nu_{j_0+1}, \ldots, \nu_{j_1}, \ldots \\
\text{epoch 0} & \quad \text{epoch 1}
\end{align*} \]

- A new epoch starts at \(\nu_j \) if \(\delta(s, \nu_j) \neq \delta(s, \nu_{j-1}) \)
Prove by induction on i:

At the beginning of epoch i, Q contains precisely all nodes v such that $\delta(s, v) = i$, and $d[v] = i$ for all these nodes.

$i = 0$: clear

Assume for $0, \ldots, i$ and prove for $i + 1$:

- During epoch i, by the lemma, and the induction hypothesis, all nodes v with $\delta(s, v) = i + 1$ will be discovered and placed at the end of Q during epoch i.
- Epoch i ends when all nodes v with $\delta(s, v) = i$ have been removed from Q.

QED. One can also easily show that T is correct.
Depth First Search (DFS)

Algorithm $DFS(G)$:
for each $v \in V$ do: $Color[v] \leftarrow \text{white}$, $\pi[v] \leftarrow \text{Nil}$
$time \leftarrow 0$
for each $v \in V$ do
 if $Color[v] = \text{white}$ then $\text{RecDFS}(v)$

Algorithm $\text{RecDFS}(u)$:
$Color[u] \leftarrow \text{gray}$
$d[u] \leftarrow ++time$ // discovery time
for each $v \in \text{Successor}(u)$ do:
 if $Color[v] = \text{white}$ then
 $\pi[v] \leftarrow u$, $\text{RecDFS}(v)$
$Color[u] \leftarrow \text{black}$
$f[u] \leftarrow ++time$ // finish time
DFS Forest:
- Tree edge
- Forward edge
- Back edge
- Cross edge
Running Time Analysis:

- Each node is discovered once
- Each edge is traversed once
- Running time = $O(|V| + |E|)$
u discovered
- gray nodes are on run-time stack

u finished

Some Back, Forward, and Cross edges
For $u, v \in V$, “$u \subseteq v$” means that u is a descendent of v in the DFS forest (possibly $u = v$), and “$u \sqsubset v$” means u is a proper descendent of v (so $u \neq v$).

Parenthesis Theorem

For all $u, v \in V$, exactly one of the following holds:

1. $[d[u], f[u]] \cap [d[v], f[v]] = \emptyset$, $u \not\sqsubset v$, and $v \not\sqsubset u$

2. $[d[u], f[u]] \subseteq [d[v], f[v]]$, and $u \sqsubseteq v$

3. $[d[u], f[u]] \supseteq [d[v], f[v]]$, and $u \sqsupseteq v$
Classification of edge $u \rightarrow v$

- **Tree edge**: in the DFS forest $(u \sqsubseteq v)$
 - v was *white* when $u \rightarrow v$ was explored;
 $$(d[u] < d[v] < f[v] < f[u])$$

- **Back edge**: $u \sqsubseteq v$ (includes self loops)
 - v was *gray* when $u \rightarrow v$ was explored
 $$(d[v] \leq d[u] < f[u] \leq f[v])$$

- **Forward edge**: a non-tree edge, $u \sqsubset v$
 - v was *black* when $u \rightarrow v$ was explored, but
 white when u was discovered
 $$(d[u] < d[v] < f[v] < f[u])$$

- **Cross edge**: $u \not\sqsubseteq v$ and $u \not\sqsubset v$
 - v was *black* when $u \rightarrow v$ was explored, and
 black when u was discovered;
 $$(d[v] < f[v] < d[u] < f[u])$$
 - points “into the past” (right to left)
White Path Theorem

Let $u, v \in V$.

$u \subseteq v \iff \begin{cases}
\text{at the time } u \text{ is discovered,} \\
\text{there is a path from } u \text{ to } v \\
\text{consisting only of white nodes}
\end{cases}$

(\Rightarrow) Assume $u \supseteq v$
White Path Theorem

Let $u, v \in V$.

$$ u \sqsupseteq v \iff \begin{cases} \text{at the time u is discovered,} \\ \text{there is a path from u to v} \\ \text{consisting only of white nodes} \end{cases} $$

(\iff) Let $u = v_0 \to v_1 \to \cdots \to v_k = v$ be the white path

Claim: $u \sqsupseteq v_i$ for all i. Assume not, and let i be minimal such that $u \not\supseteq v_i (i > 0) \Rightarrow \iff$
Topological Sorting
Suppose \(G = (V, E) \) is a DAG (Directed Acyclic Graph)
A topological sort of \(G \) is an ordering of the vertices
\(V_1, V_2, \ldots, V_n \)
such that \((v_i, v_j) \in E \Rightarrow i < j \)
“all arrows go from left to right”

Algorithm TopSort

- initialize an empty list
- Run DFS: When a node is painted black, insert it at the front of the list

So we output vertices on order of decreasing finishing time
(discovery time, finishing time)
Lemma

G has a cycle \iff DFS produces a back edge

Proof:

• (\Leftarrow) A back edge trivially yields a cycle
• \((\Rightarrow)\) Suppose \(G\) has a cycle \(C\) of vertices, and let \(v\) be the first vertex discovered in \(C\):

By the White Path Theorem, \(u\) is a descendent of \(v\) in the DFS forest

\[\therefore\] the edge \(u \rightarrow v\) is a back edge
Theorem
Algorithm TopSort is correct

Proof:

- Let $(u, v) \in E$
- We want to show $f[v] < f[u]$
- Cases:
 - (u, v) is a tree edge: $u \rightarrow v$ and $d[u] < d[v] < f[v] < f[u]$
 - (u, v) is a back edge: impossible, since G is acyclic
 - (u, v) is a forward edge: $u \rightarrow v$ and $d[u] < d[v] < f[v] < f[u]$
 - (u, v) is a cross edge: $f[v] < d[u] < f[u]$
- QED