Disjoint Set Operations

We want to maintain a collection of disjoint sets.

Each set is identified by one of its members, called the *representative* of the set.

Operations:

- *MakeSet*(x) – create a the singleton set \{x\}
- *Union*(x, y) – form the union of sets whose representatives are x and y (original sets are lost)
- *Find*(x) – find the representative of the set containing x
One application:

- Finding connected components in a “dynamic” undirected graph

![Graph Diagram]

The procedure \textsc{ConnectedComponents} initially places each vertex in its own set. Then, for each edge \((u, v)\), \textsc{Union} these sets containing \(u\) and \(v\). By Exercise 21.1-2, after processing all the edges, two vertices are in the same connected component if and only if the corresponding objects are in the same set. Thus, \textsc{ConnectedComponents} computes sets in such a way that the procedure \textsc{SameComponent} can determine whether two vertices are in the same connected component.
A simple approach:

- A set is implemented as a doubly linked list of nodes
- the representative is the left-most node in the list
- each node in the list contains a pointer to the representative
- the representative contains the length of the list, and a pointer to the right-most node
- \textit{MakeSet} and \textit{Find} — trivial, $O(1)$
- \textit{Union}: concatenate lists Longest $\|\|$ Shortest, and update pointers to representative in Shortest
Theorem

Any sequence of m operations, of which n are *MakeSet*, takes time $O(m + n \log n)$.

Proof. Want to show that total time spent updating representatives is $O(n \log n)$

Key observation: each time the representative pointer of a node is updated, the set in which it is contained at least doubles in size

∴ if a node’s representative pointer is updated k times, then $2^k \leq n \Rightarrow k \leq \log_2 n$

QED
Union/Find with “up trees”

Each set is implemented as a tree

Every node in the tree, other than the root, has a pointer “up” to its parent

The representative of a set is the root of its tree

Find: follow pointers to the root

Union: Merge one root into the other root
Example of Union:

Assume n items and m operations

Worst case: mn — trees may degenerate into lists

Two simple ideas: size balancing and path compression
Size balancing

Size balancing rule
In a Union operation, always merge the smaller tree into the larger tree

Lemma 1
If T is a tree created by balanced merges, and T has size n and height h, then $n \geq 2^h$
Proof: induction on n.

Assume T was obtained by merging T_1 into T_2

![Diagram of merging two triangles](image)

where $n_1 := \text{Size}(T_1) \leq n_2 := \text{Size}(T_2)$

Let $h_i := \text{Height}(T_i)$ for $i = 1, 2$

By induction, $n_1 \geq 2^{h_1}$ and $n_2 \geq 2^{h_2}$

If $h_1 \geq h_2$, then $h = h_1 + 1$ and

$$n = n_1 + n_2 \geq 2n_1 \geq 2 \cdot 2^{h_1} = 2^h$$

If $h_1 < h_2$, then $h = h_2$ and

$$n = n_1 + n_2 \geq n_2 \geq 2^{h_2} = 2^h \quad \text{QED}$$
Path compression

Path compression rule
After each Find operation, make all nodes visited point to the root of the tree
Running time analysis

For \(g \geq 0 \), define

\[
F(g) := 2^{2^{\cdots^{2}}} \quad \text{g 2's}
\]

Formally, \(F(0) := 1 \) and \(F(g + 1) := 2^{F(g)} \)

Define \(\log^* r := \text{least } g \text{ such that } F(g) \geq r \)

Theorem

With size balancing and path compression, any sequence of \(m \) union/find operations on \(n \) items takes time \(O((m + n) \log^* n) \)
\[R_g := (\log^*)^{-1}(g) = \{ r : \log^* r = g \} \]

\[\log^* r \leq g \iff r \leq F(g) \]

\[R_0 = \{ 0, 1 \}, \quad R_g = \{ F(g-1) + 1, \ldots, F(g) \} \text{ for } g > 0 \]
Let $O\rho_1, \ldots, O\rho_m$ be a sequence of union/find operations

Consider the forest of trees \mathcal{F} that results after executing $O\rho_1, \ldots, O\rho_m$ with size balancing, but no path compression.

Define the **rank** of a node v to be its height in \mathcal{F}.

rank is a static quantity – it does not change over time
Lemma 2

For every $r \geq 0$, there are at most $n/2^r$ nodes of rank r

Proof:

- By Lemma 1, any node of rank r is the root of a subtree in \mathcal{F} of size $\geq 2^r$ (*take a snapshot at the time when the node is merged into another*)
- Any two distinct nodes of rank r are roots of **disjoint** subtrees in \mathcal{F}
- Therefore, there can be at most $n/2^r$ nodes of rank r
- QED
Lemma 3

Suppose that at some time during the execution of O_{p_1}, \ldots, O_{p_m} with compression, ν is a (strict) descendent of w. Then $Rank(\nu) < Rank(w)$

Proof:

- Key observations:
- path compression only eliminates descendency relations – it never creates any new ones
- with no path compression, union/find operations never destroy descendency relations
Thus, if v is a descendent of w at some point in time during the execution of Op_1, \ldots, Op_m with compression, then v is a descendent of w in F, and hence $\text{Rank}(v) < \text{Rank}(w)$

QED

Definition

For a node v, we define its **group** as

$$G(v) := \log^* \text{Rank}(v)$$

Clearly, $G(v) \leq \log^* n$
Proof of Theorem

Union operations take $O(1)$, so we can focus on find operations.

Let \mathcal{I} be the set of indices i such that Op_i is a find operation.

Consider a fixed $i \in \mathcal{I}$, with $Op_i = "Find(\nu)"

Consider the path from ν to the root:
\[\nu = \nu_1, \nu_2, \ldots, \nu_{k-2}, \nu_{k-1}, \nu_k = \text{root} \]

By Lemma 3, we have
\[\text{Rank}(\nu_1) < \text{Rank}(\nu_2) < \cdots < \text{Rank}(\nu_k) \]
\[G(\nu_1) \leq G(\nu_2) \leq \cdots \leq G(\nu_k) \]
Let $X_i = \{v_1, \ldots, v_k\}$

$C := \sum_{i \in I} |X_i|$ is the cost of all the find operations

Let’s split X_i into 3 sets:

- $Y_i := \{v_j : j < k - 1 \text{ and } G(v_j) = G(v_{j+1})\}$
- $Z_i := \{v_j : j < k - 1 \text{ and } G(v_j) < G(v_{j+1})\}$
- $W_i := \{v_j : j \geq k - 1\}$

We have

- $|Z_i| \leq G(v_k) \leq \log^* n$
- $|W_i| \leq 2$
So we have

\[C = \sum_{i \in \mathcal{I}} (|Y_i| + |Z_i| + |W_i|) \leq \sum_{i \in \mathcal{I}} |Y_i| + m \log^* n + 2m \]

Claim: \(C' := \sum_i |Y_i| \leq n \log^* n \)

Idea: Consider a fixed node \(v \)

- Each time \(v \) moves during a path compression, \(v \)'s new parent has a higher rank than \(v \)'s old parent
- If \(G(v) = g \), then after \(|R_g| - 1\) moves, \(v \) must acquire a parent whose group is \(> g \)
For $g \geq 0$, let

$$V_g := \{ \nu : G(\nu) = g \} = \{ \nu : \text{Rank}(\nu) \in R_g \}$$

We have

$$C' \leq \sum_{g=0}^{\log^* n} |V_g| \cdot (|R_g| - 1)$$

$$\leq n + \sum_{g=2}^{\log^* n} |V_g||R_g|$$

To prove the claim, it will suffice to show that

$$|V_g||R_g| \leq n$$

for $g > 0$ (assume $n > 1 \implies \log^* n > 0$)
For $g > 0$, we have

$$R_g = \{F(g-1) + 1, \ldots, F(g)\}$$

$$|V_g| \leq \sum_{r \in R_g} n/2^r \quad \text{(by Lemma 2)}$$

$$= \frac{n}{2^{F(g-1)+1}} \sum_{j=0}^{F(g)-F(g-1)-1} 1/2^j$$

$$\leq \frac{n}{2^{F(g-1)}} = \frac{n}{F(g)}$$

Therefore,

$$|V_g| |R_g| \leq \frac{n}{F(g)} \cdot |R_g| \leq \frac{n}{F(g)} \cdot F(g) = n.$$