Recall: Universal Hashing

\(\mathcal{K} \) – a finite, non-empty set of hash keys

\(\mathcal{H} = \{ h_k \}_{k \in \mathcal{K}} \) – a family of hash functions

\(h_k : \mathcal{U} \to \{ 0, \ldots, m - 1 \} \), indexed by \(\mathcal{K} \)

Def’n: \(\mathcal{H} \) is called universal if for all \(a, b \in \mathcal{U} \) with \(a \neq b \),

\[
\left| \{ k \in \mathcal{K} : h_k(a) = h_k(b) \} \right| \leq \frac{|\mathcal{K}|}{m}.
\]

Probabilistic interpretation: if \(R \) is a random variable, uniformly distributed over \(\mathcal{K} \), then

\[
\Pr[h_R(a) = h_R(b)] \leq \frac{1}{m}.
\]
Constructing Universal Families

Arithmetic modulo n:

- \mathbb{Z}_n — residue classes mod n:
 - $\mathbb{Z}_n = \{[0], [1], \ldots, [n-1]\}$
 - $[a] + [b] := [(a + b) \mod n]$
 - $[a] \cdot [b] := [(a \cdot b) \mod n]$

- \mathbb{Z}_n is a ring:
 - $+, \cdot$ are commutative, associative
 - \cdot distributes over $+$
 - $[0]$ is the additive identity
 - $[1]$ is the multiplicative identity
Arithmetic modulo a prime p:

- \mathbb{Z}_p is a **field**:
 - Every non-zero $\alpha \in \mathbb{Z}_p$ has a multiplicative inverse $\beta \in \mathbb{Z}_p$ (i.e., $\alpha \beta = 1$)
 - More generally: if $\alpha, \beta \in \mathbb{Z}_p$ with $\alpha \neq 0$, then the equation
 $$\alpha x = \beta$$
 has a unique solution x
A universal family

Let m be a prime, and t a positive integer

Define $\mathcal{U} := \mathbb{Z}^{t+1}_m$, $\mathcal{K} := \mathbb{Z}^t_m$

For $k = (k_1, \ldots, k_t) \in \mathcal{K}$, $a = (a_0, a_1, \ldots, a_t) \in \mathcal{U}$, define

$$h_k(a) := a_0 + \sum_{i=1}^{t} a_i k_i$$

Define

$$\mathcal{H} := \{h_k\}_{k \in \mathcal{K}}$$

Theorem: \mathcal{H} is universal
Proof of theorem.

Suppose \((a_0, \ldots, a_t) \neq (b_0, \ldots, b_t)\)

We want to count the number \(N\) of solutions \((k_1, \ldots, k_t)\) to the equation

\[
a_0 + \sum_i a_i k_i = b_0 + \sum_i b_i k_i.
\]

Re-write this as

\[
c_0 + \sum_i c_i k_i = 0
\]

where \(c_i := a_i - b_i\)

By assumption, not all \(c_i\)'s are zero

Want to show: \(N \leq |\mathcal{K}|/m = m^{t-1}\)
Proof (cont’d).

Case 1: $c_i = 0$ for all $i = 1, \ldots, t$

- $N = 0$

Case 2: $c_j \neq 0$, for some $j = 1, \ldots, t$

- For every choice of $k_1, \ldots, k_{j-1}, k_{j+1}, \ldots, k_t$, there is a unique k_j such that (k_1, \ldots, k_t) is a solution (since \mathbb{Z}_m is a field)

- Therefore, $N = m^{t-1}$

QED
Practical considerations

Input space:

• View data items as bit strings of some fixed length ℓ

• Break up into “chunks” of length w, where $2^w \leq m < 2^{w+1}$:

 $\begin{array}{cccc}
 S_0 & S_1 & \cdots & S_t \\
 \end{array}$

• View each s_i as a number between 0 and $2^w - 1$, and each such number as an element of \mathbb{Z}_m

• This map from $\{0, 1\}^\ell$ to \mathbb{Z}_{m}^{t+1} is injective

• Variable length inputs (padding)
Practical considerations (cont’d)

Output space, choice of prime m

Bertrand’s Postulate: There is always a prime between x and $2x$ for all integers $x \geq 1$

If the load factor gets too large, we can choose a larger prime, and reconstruct the hash table using a new hash function
Another universal family

Let p be a prime, and m a positive integer

Define $\mathcal{U} := \{0, \ldots, p - 1\}$,

$\mathcal{K} := \{1, \ldots, p - 1\} \times \{0, \ldots, p - 1\}$

For $k = (k_1, k_2) \in \mathcal{K}$, $a \in \mathcal{U}$, define

$$h_k(a) := \left((k_1 a + k_2) \mod p \right) \mod m$$

Theorem: $\mathcal{H} := \{h_k\}_{k \in \mathcal{K}}$ is universal (see text)

Pros: free choice of m

Cons: multiplication of large numbers
General problem: large key space — almost as large as the input space

Solution: weaker (but still useful) hashing requirements
ε-universal Hashing

\(\mathcal{K} \) – a finite, non-empty set of **hash keys**

\(\mathcal{H} = \{h_k\}_{k \in \mathcal{K}} \) – a **family** of hash functions

\(h_k : \mathcal{U} \rightarrow \{0, \ldots, m-1\} \), indexed by \(\mathcal{K} \)

Def’n: Let \(0 \leq \epsilon \leq 1 \). \(\mathcal{H} \) is called **ε-universal** if for all \(a, b \in \mathcal{U} \) with \(a \neq b \),

\[
|\{k \in \mathcal{K} : h_k(a) = h_k(b)\}| \leq \epsilon \cdot |\mathcal{K}|.
\]

Probabilistic interpretation: if \(R \) is a random variable, uniformly distributed over \(\mathcal{K} \), then

\[
\Pr[h_R(a) = h_R(b)] \leq \epsilon
\]

universal = \((1/m)\)-universal
Using ε-universal hash families

As long as ε is not too big, many of the results we proved have useful analogs.

E.g., in a table with at most n data items

- expected cost of each dictionary operation in a table containing n items is $\leq 1 + \varepsilon n$.
- expected value of maximum load is $\leq \sqrt{\varepsilon n^2 + n}$

Building ε-universal hash families

We can get by with much shorter hash keys
More about modular arithmetic

Let \(p \) be a prime

Let \(f = c_d X^d + c_{d-1} X^{d-1} + \cdots + c_1 X + c_0 \) be a polynomial with coefficients in \(\mathbb{Z}_p \), with \(c_d \neq 0 \) (the degree of \(f \) is \(d \))

Then \(f \) has at most \(d \) roots in \(\mathbb{Z}_p \):

\[
\left| \left\{ u \in \mathbb{Z}_p : \sum_{i=0}^{d} c_i u^i = 0 \right\} \right| \leq d.
\]

This is a general fact that holds for any field (e.g., the reals, the complex numbers, \(\mathbb{Z}_p \)), but not for arbitrary rings (e.g., \(\mathbb{Z}_n \)).
An ε-universal family

Let m be a prime, and t a positive integer.

Define $\mathcal{U} := \mathbb{Z}_{m}^{t+1}$, $\mathcal{K} := \mathbb{Z}_{m}$.

For $k \in \mathcal{K}$, $a = (a_{0}, a_{1}, \ldots, a_{t}) \in \mathcal{U}$, define

$$h_{k}(a) := \sum_{i=0}^{t} a_{i}k^{i}$$

Define

$$\mathcal{H} := \{h_{k}\}_{k \in \mathcal{K}}$$

Theorem: \mathcal{H} is (t/m)-universal.
Proof. Suppose \((a_0, \ldots, a_t) \neq (b_0, \ldots, b_t)\)

We want to count the number \(N\) of solutions \(k\) to the equation

\[
\sum_i a_i k^i = \sum_i b_i k^i.
\]

Re-write this as

\[
\sum_i c_i k^i = 0
\]

where \(c_i := a_i - b_i\)

\(N = \#\) roots of \(\sum_i c_i X^i\), which is a non-zero polynomial of degree at most \(t\)

\[\therefore N \leq t = (t/m) \cdot m.\] QED
Pairwise Independent Hashing: a stronger notion

\(\mathcal{K} \) – a finite, non-empty set of **hash keys**

\(\mathcal{H} = \{ h_k \}_{k \in \mathcal{K}} \) – a **family** of hash functions

\(h_k : \mathcal{U} \to \{0, \ldots, m - 1\} \), indexed by \(\mathcal{K} \)

Def’n: \(\mathcal{H} \) is called **pairwise independent** if for all \(a, b \in \mathcal{U} \) with \(a \neq b \), and for all \(r, s \in \{0, \ldots, m - 1\} \), we have

\[
\left| \{ k \in \mathcal{K} : h_k(a) = r \text{ and } h_k(b) = s \} \right| = \frac{|\mathcal{K}|}{m^2}.
\]
Let R be a random variable, uniformly distributed over \mathcal{K}

For each $a \in \mathcal{U}$, define the random variable $V_a := h_R(a)$

Claim: if $|\mathcal{U}| > 1$, then each V_a is uniformly distributed over $\{0, \ldots, m - 1\}$

Proof. Let $a \in \mathcal{U}, r \in \{0, \ldots, m - 1\}$

Let $b \in \mathcal{U}, b \neq a$. Then:

$$
\Pr[V_a = r] = \sum_s \Pr[V_a = r \text{ and } V_b = s]
= \sum_s 1/m^2 = 1/m.
$$
Recall: X and Y are **independent** if for all possible x and y,

$$\Pr[X = x \text{ and } Y = y] = \Pr[X = x] \Pr[Y = y],$$
or equivalently

$$\Pr[X = x] = \Pr[X = x \mid Y = y].$$

A family of random variables $\{X_i\}_{i \in \mathcal{I}}$ is called **pairwise independent** if X_i and X_j are independent for all $i \neq j$.
The family of random variables \(\{ V_a \}_{a \in \mathcal{U}} \) is pairwise independent:

\[
\Pr[V_a = r \text{ and } V_b = s] = \frac{1}{m^2} = \Pr[V_a = r] \cdot \Pr[V_b = s]
\]

pairwise independent \(\implies \) universal:

\[
\Pr[V_a = V_b] = \sum_s \Pr[V_a = s \text{ and } V_b = s] = \sum_s \frac{1}{m^2} = \frac{1}{m}
\]

(Homework) pairwise indep. families are easily constructed, but must have large key spaces
Application: message authentication

Alice and Bob share a random key R

Later, Alice sends a message a to Bob, together with a hash code $C := h_R(a)$

An adversary can try to fool Bob, by sending him a different message with a correct hash code, that is, a message B, and a hash code D, such that $B \neq a$ and $h_R(B) = D$

Here, B and D are functions of C

(Homework) Pairwise independent hashing implies

$$\Pr[B \neq a \text{ and } h_R(B) = D] \leq \frac{1}{m}$$