1. Suppose \(E = (E, D) \) is a block cipher defined over \((K, X)\), where \(X = \{0,1\}^n \). Let \(M = \{0,1\}^m \), where \(m < n \). We build an encryption scheme \(E' = (E', D') \), with key space \(K \) and message space \(M \), as follows. To encrypt \(m \in M \) under a key \(k \in K \), we choose random \(r \in \{0,1\}^{n-m} \), and compute \(c := E(k, m \| r) \), and output the ciphertext \((c, r)\). To decrypt \((c, r)\), we compute \((m \| r') := D(k, c)\), and output \(m \) is \(r' = r \), and reject otherwise. Show that if \(2^{n-m} \) is large, then \(E' \) provides authenticated encryption.

2. Instead of ciphertext integrity (CI), one can define a notion of security called plaintext integrity (PI). The attack game is the same, but the winning condition is different:

- \(D(k, c) \notin \{\text{reject}, m_1, m_2, \ldots\} \).

Show that:

(a) MAC-then-Encrypt provides CPA+PI.
(b) CCPA+PI implies authenticated encryption (look up the definition of CCPA in Ch. 9 of the text).

This shows that if we want plaintext integrity and chosen ciphertext security, then we really need ciphertext integrity.

For the following exercise, we need the following notions from complexity theory.

- We say problem \(A \) is deterministic poly-time reducible to problem \(B \) if there exists a deterministic algorithm \(R \) for solving problem \(A \) that makes calls to a subroutine for problem \(B \), where the running time of \(R \) (not including the running time for the subroutine for \(B \)) is polynomial in the input length.

- We say that \(A \) and \(B \) are deterministic poly-time equivalent if \(A \) is deterministic poly-time reducible to \(B \) and \(B \) is deterministic poly-time reducible to \(A \).

3. Consider the following problems.

(a) Given a prime \(p \), a prime \(q \) that divides \(p - 1 \), an element \(\gamma \in \mathbb{Z}_p^* \) generating a subgroup \(G \) of \(\mathbb{Z}_p^* \) of order \(q \), and two elements \(\alpha, \beta \in G \), compute \(\gamma^{x'y'} \), where \(x := \log_{\gamma} \alpha \) and \(y := \log_{\gamma} \beta \). (This is just the Diffie–Hellman problem.)

(b) Given a prime \(p \), a prime \(q \) that divides \(p - 1 \), an element \(\gamma \in \mathbb{Z}_p^* \) generating a subgroup \(G \) of \(\mathbb{Z}_p^* \) of order \(q \), and an element \(\alpha \in G \), compute \(\gamma^{x^2} \), where \(x := \log_{\gamma} \alpha \).

(c) Given a prime \(p \), a prime \(q \) that divides \(p - 1 \), an element \(\gamma \in \mathbb{Z}_p^* \) generating a subgroup \(G \) of \(\mathbb{Z}_p^* \) of order \(q \), and two elements \(\alpha, \beta \in G \), with \(\beta \neq 1 \), compute \(\gamma^{xy'} \), where \(x := \log_{\gamma} \alpha \), \(y' := y^{-1} \mod q \), and \(y := \log_{\gamma} \beta \).

(d) Given a prime \(p \), a prime \(q \) that divides \(p - 1 \), an element \(\gamma \in \mathbb{Z}_p^* \) generating a subgroup \(G \) of \(\mathbb{Z}_p^* \) of order \(q \), and an element \(\alpha \in G \), with \(\alpha \neq 1 \), compute \(\gamma^{x'} \), where \(x' := x^{-1} \mod q \) and \(x := \log_{\gamma} \alpha \).
Show that these problems are deterministic poly-time equivalent. Moreover, your reductions should preserve the values of \(p, q, \) and \(\gamma; \) that is, if the algorithm that reduces one problem to another takes as input an instance of the former problem of the form \((p, q, \gamma, \ldots)\), it should invoke the subroutine for the latter problem with inputs of the form \((p, q, \gamma, \ldots)\).

4. Suppose there is a probabilistic algorithm \(A \) that takes as input a prime \(p \), a prime \(q \) that divides \(p - 1 \), and an element \(\gamma \in \mathbb{Z}_p^* \) generating a subgroup \(G \) of \(\mathbb{Z}_p^* \) of order \(q \). The algorithm also takes as input \(\alpha \in G \). It outputs either “failure,” or \(\log_{\gamma} \alpha \). Furthermore, assume that \(A \) runs in expected polynomial time, and that for all \(p, q, \) and \(\gamma \) of the above form, and for randomly chosen \(\alpha \in G \), \(A \) succeeds in computing \(\log_{\gamma} \alpha \) with probability \(\epsilon(p, q, \gamma) \). Here, the probability is taken over the random choice of \(\alpha \), as well as the random choices made during the execution of \(A \). Show how to use \(A \) to construct another probabilistic algorithm \(A' \) that takes as input \(p, q, \) and \(\gamma \) as above, as well as \(\alpha \in G \), runs in expected polynomial time, and that satisfies the following property:

\[
\text{if } \epsilon(p, q, \gamma) \geq 0.001, \text{ then for all } \alpha \in G, A' \text{ computes } \log_{\gamma} \alpha \text{ with probability at least 0.999.}
\]

The algorithm \(A' \) in the previous exercise is an example of a **random self-reduction**, that is, an algorithm that reduces the task of solving an arbitrary instance of a given problem to that of solving a random instance of the problem. Intuitively, the existence of such a reduction means that the problem is no harder in the worst case than on average.

5. Let \(p \) be a prime, \(q \) be a prime dividing \(p - 1 \), and let \(G \) be the subgroup of \(\mathbb{Z}_p^* \) of order \(q \).

(a) We may define a hash function \(H_1 : \mathbb{Z}_q \times \mathbb{Z}_q \rightarrow G \) as follows. Let \(\gamma \) be a randomly chosen generator for \(G \), and let \(\alpha \) be a randomly chosen element of \(G \). For \((x, y) \in \mathbb{Z}_q \times \mathbb{Z}_q\), define \(H_1(x, y) := \gamma^x \alpha^y \). Here, \(\gamma \) and \(\alpha \) are public parameters that define the function \(H_1 \). Show that under the DL assumption for \(G \), \(H_1 \) is collision resistant.

(b) We may extend the input domain of \(H_1 \) as follows. Again, let \(\gamma \) be a randomly chosen generator for \(G \), and let \(\alpha_1, \ldots, \alpha_k \) be randomly chosen elements of \(G \). The group elements \(\gamma, \alpha_1, \ldots, \alpha_k \) define the hash function \(H_2(x, y_1, \ldots, y_k) := \gamma^x \alpha_1^{y_1} \cdots \alpha_k^{y_k} \). Show that under the DL assumption for \(G \), \(H_2 \) is collision resistant.