Problem 1

Show the preorder, postorder, and breadth-first order of the following tree.

Problem 2

Discuss how you could modify the code in BreadthFirstSearch.java so that the nodes print out with an indentation that is proportional to their depth. For example, the animal taxonomy tree would print out in the form:

Mammal
 Rodent
 Carnivore
 Primate
 Squirrel
 Rat
 Cat
 Dog
 Skunk
 Gorilla
 Human

You do not have to write out all the code involved; just give a description of how it would work.
Problem 3

Write a recursive function \(\text{sameShape}(T,U) \) which takes two binary trees and returns \textbf{true} if they are the same shape and \textbf{false} otherwise. The labels in the nodes do not matter. For instance, in the diagram below, A is the same shape as B but not as C or D.

![Diagram showing trees A, B, C, and D]

Honors Problem

In a tree, the \textit{tree distance} between nodes X and Y is the number of steps it takes to get from X to Y, going up and down the tree. The \textit{least common ancestor} of nodes X and Y is the lowest node in the tree that is an ancestor of both X and Y. Note that if Z is the least common ancestor of X and Y, then the tree distance from X to Y is the number of steps from X to Z plus the number of steps from Y to Z.

For example, in the figure for problem 1, the tree distance from F to K is 3 (F \(\rightarrow \) G \(\rightarrow \) J \(\rightarrow \) K). The least common ancestor of F and K is G. The least common ancestor of C and B is B itself.

Describe a method that takes as input two tree nodes X and Y and returns their least common ancestor, and runs in time proportional to the tree distance from X to Y. You may add additional fields to the nodes, and you may assumed that these are initialized to null. Hint: Climb upward from X and Y in alternating steps.