Introduction
Vision

- “to know what is where, by looking.” (Marr).
- Where
- What
What is Computer Vision?

• *Vision* is about discovering from images what is present in the scene and where it is.

• In *Computer Vision* a camera (or several cameras) is linked to a computer. The computer interprets images of a real scene to obtain information useful for tasks such as navigation, manipulation and recognition.
Applications

- Intelligent machines (AI)
- Industrial inspection
e.g. light bulbs, electronic circuits
- Automotive
e.g. Ford, GM, DARPA Grand Challenge
- Security
e.g. facial recognition in airports
- Toys (Aibo dog)
- Image/video retrieval

© 2004 by Davi Geiger

Computer Vision

- Digital cameras are everywhere now….
Vision is inferential: Light

Checker-shadow illusion:
The squares marked A and B are the same shade of gray.

(http://www-bcs.mit.edu/people/adelson/checkershadow_illusion.html)
Vision is Inferential: Prior Knowledge
Computer Vision

- Inference \rightarrow Computation
- Building machines that see
- Modeling biological perception
The Human Eye

- Retina measures about 5×5 cm and contains 10^8 sampling elements (rods and cones).
- The eye's spatial resolution is about 0.01° over a 150° field of view (not evenly spaced, there is a fovea and a peripheral region).
- Intensity resolution is about 11 bits/element, spectral range is 400–700nm.
- Temporal resolution is about 100 ms (10 Hz).
- Two eyes give a data rate of about 3 GB/s!
Human visual system

- Vision is the most powerful of our own senses.
- Around 1/3 of our brain is devoted to processing the signals from our eyes.
- The visual cortex has around $O(10^{11})$ neurons.

[Thorpe et. al.]
Why is Vision “Interesting”?

• Psychology
 – ~ 35% of cerebral cortex is for vision.
 – Vision is how we experience the world.
• Engineering
 – Want machines to interact with world.
 – Digital images are everywhere.
Computer Vision: A whole series of problems

- What is in the image?
 - Object recognition problem
- Where is it?
 - 3D spatial layout
 - Shape
- How is the camera moving?
- What is the action?
A Quick Tour of Computer Vision
Boundary Detection

http://www.robots.ox.ac.uk/~vdg/dynamics.html
Boundary Detection

Finding the Corpus Callosum

(G. Hamarneh, T. McInerney, D. Terzopoulos)
Tracking
Tracking
Tracking
Tracking
Tracking

AVERAGE QUEUE LENGTH - SITE1, JULY 2001

Queue 1

Queue 2

© 2004 by Davi Geiger

Computer Vision
Application: Assisted driving

Pedestrian and car detection

Lane detection

• Collision warning systems with adaptive cruise control,
• Lane departure warning systems,
• Rear object detection systems,
Stereo
Stereo

http://www.magiceye.com/
Motion

Motion - Application

(www.realviz.com)
Pose Determination

Visually guided surgery

© 2004 by Davi Geiger

Computer Vision

January 2004
Recognition - Shading

Lighting affects appearance
Classification

3D Model Search Engine

Keywords:

Find similar shape
Find similar shape
Find similar shape
Find similar shape

Find similar shape
Find similar shape
Find similar shape
Find similar shape

Find similar shape
Find similar shape
Find similar shape
Find similar shape

Find similar shape
Find similar shape
Find similar shape
Find similar shape

(C) 2004 by David Geiger
Computer Vision
January 2004
(Funkhauser, Min, Kazhdan, Chen, Halderman, Dobkin, Jacobs)
Application: Improving online search

Query: STREET

Organizing photo collections
Vision depends on:

- Geometry
- Physics
- The nature of objects in the world (This is the hardest part).
Approaches to Vision
Modeling + Algorithms

- Build a simple model of the world (eg., flat, uniform intensity).
- Find provably good algorithms.
- Experiment on real world.
- Update model.

Problem: Too often models are simplistic or intractable.
Bayesian inference

• Bayes law: \(P(A|B) = P(B|A) \cdot P(A)/P(B) \).
• \(P(\text{world}|\text{image}) = P(\text{image}|\text{world}) \cdot P(\text{world})/P(\text{image}) \)
• \(P(\text{image}|\text{world}) \) is computer graphics
 – Geometry of projection.
 – Physics of light and reflection.
• \(P(\text{world}) \) means modeling objects in world.
 Leads to statistical/learning approaches.

Problem: Too often probabilities can’t be known and are invented.
Engineering

• Focus on definite tasks with clear requirements.
• Try ideas based on theory and get experience about what works.
• Try to build reusable modules.

Problem: Solutions that work under specific conditions may not generalize.
The State of Computer Vision

• Science
 – Study of intelligence seems to be hard.
 – Some interesting fundamental theory about specific problems.
 – Limited insight into how these interact.
Related Fields

- Graphics. “Vision is inverse graphics”.
- Visual perception.
- Neuroscience.
- AI
- Learning
- Math: eg., geometry, stochastic processes.
- Optimization.