Review

- Real Algebra
- Geometry Theorem Proving
Outline

- Combining Decision Procedures

Sources:

Combining Decision Procedures

Often, verification conditions are expressed in a language which mixes several theories.

A natural question is whether one can use decision procedures for individual theories to construct a decision procedure for the union theory.

More precisely, suppose that $\Sigma_1, \ldots, \Sigma_n$ are n signatures, and for $i = 1, \ldots, n$, let T_i be a Σ_i-theory.

Then, let Sat_i be a decision procedure for deciding the T_i-satisfiability of Σ_i-formulas.

How can we use these to construct a decision procedure for the T-satisfiability of Σ-formulas, where $T = \bigcup T_i$ and $\Sigma = \bigcup \Sigma_i$?

Let’s start by identifying some interesting theories that we may want to combine.
The Theory $T_{\mathcal{E}}$ of Equality

Consider the signature $(\mathbin{=}, f, g, \ldots, p, q, \ldots)$ with equality and some number of function and predicate symbols.

Given such a signature, the theory $T_{\mathcal{E}}$ is the theory $Cn \emptyset$.

The theory does not restrict the possible values of the symbols in its signature in any way. For this reason, it is sometimes called the theory of *equality with uninterpreted functions (EUF)*.

The satisfiability problem for $T_{\mathcal{E}}$ is just the satisfiability problem for first-order logic, which is undecidable.

The satisfiability problem for conjunctions of literals in $T_{\mathcal{E}}$ is decidable in polynomial time using *congruence closure*.

The Theory T_Z of Integers

Let Σ_Z be the signature $(0, 1, +, −, \leq)$.

Let A_Z be the standard model of the integers with domain \mathbb{Z}.

Then T_Z is defined to be the set of all Σ_Z-sentences true in the model A_Z.

As showed by Presburger in 1929, the general satisfiability problem for T_Z is decidable, but its complexity is super-exponential.

The quantifier-free satisfiability problem for conjunctions of literals in T_Z is “only” NP-complete.

Why?
The Theory T_Z of Integers

Let Σ^\times_Z be the same as Σ_Z with the addition of the symbol \times for multiplication, and define A_Z^\times and T_Z^\times in the obvious way.

The satisfiability problem for T_Z^\times is undecidable (a result shown as part of Gödel’s incompleteness theorem).

The question of satisfiability for quantifier-free formulas in T_Z^\times is equivalent to Hilbert’s tenth problem. It was shown to be undecidable by Matiyasevich in 1971.
The Theory $T_{\mathcal{R}}$ of Reals

Let $\Sigma_{\mathcal{R}}$ be the signature $(0, 1, +, -, \leq)$.

Let $A_{\mathcal{R}}$ be the standard model of the reals with domain \mathcal{R}.

Then $T_{\mathcal{R}}$ is defined to be the set of all $\Sigma_{\mathcal{R}}$-sentences true in the model $A_{\mathcal{R}}$.

The satisfiability problem for $T_{\mathcal{R}}$ is decidable, but the complexity is doubly-exponential.

The quantifier-free satisfiability problem for conjunctions of literals in $T_{\mathcal{R}}$ is solvable in polynomial time, though exponential methods (like Simplex or Fourier-Motzkin) perform well in practice.
The Theory T_R of Reals

Let Σ_R^\times be the same as Σ_R with the addition of the symbol \times for multiplication, and define A_R^\times and T_R^\times in the obvious way.

In contrast to the theory of integers, the satisfiability problem for T_R^\times is decidable though the complexity is inherently doubly-exponential.
The Theory T_A of Arrays

Let Σ_A be the signature $(\text{read}, \text{write})$.

Let Λ_A be the following axioms:

$$
\forall a \forall i \forall v \left(\text{read}(\text{write}(a, i, v), i) = v \right)
$$

$$
\forall a \forall i \forall j \forall v \left(i \neq j \rightarrow \text{read}(\text{write}(a, i, v), j) = \text{read}(a, j) \right)
$$

$$
\forall a \forall b \left((\forall i \left(\text{read}(a, i) = \text{read}(b, i) \right)) \rightarrow a = b \right)
$$

Then $T_A = Cn \Lambda_A$.

The satisfiability problem for T_A is undecidable, but the quantifier-free satisfiability problem for conjunctions of literals in T_A is decidable (the problem is NP-complete).
Theories of Inductive Data Types

An *inductive data type* (IDT) defines one or more *constructors*, and possibly also *selectors* and *testers*.

Example: list of int

- Constructors: $\text{cons}: (\text{int}, \text{list}) \rightarrow \text{list}$, $\text{null}: \text{list}$
- Selectors: $\text{car}: \text{list} \rightarrow \text{int}$, $\text{cdr}: \text{list} \rightarrow \text{list}$
- Testers: is_cons, is_null

The *first order theory* of a recursive data type associates a function symbol with each constructor and selector and a predicate symbol with each tester.

Example: $\forall x : \text{list}. \ (x = \text{null} \lor \exists y : \text{int}, z : \text{list}. \ x = \text{cons}(y, z))$
Theories of Inductive Data Types

An *inductive data type* (IDT) defines one or more *constructors*, and possibly also *selectors* and *testers*.

Example: list of int

- Constructors: \(\text{cons}: (\text{int, list}) \rightarrow \text{list, null: list}\)
- Selectors: \(\text{car: list} \rightarrow \text{int, cdr: list} \rightarrow \text{list}\)
- Testers: \(\text{is_cons, is_null}\)

The *first order theory* of a recursive data type associates a function symbol with each constructor and selector and a predicate symbol with each tester.

Example: \(\forall x: \text{list}. (x = \text{null} \lor \exists y: \text{int, z: list}. x = \text{cons}(y, z))\)

For IDTs with a single constructor, a conjunction of literals is decidable in polynomial time using an algorithm by Oppen.

For more general IDTs, the problem is NP-complete, but reasonably efficient algorithms exist in practice.
The Theory T_B of Fixed-Width Bitvectors

A natural domain for high-level reasoning about circuits and programs is the domain of bitvectors.

The theory T_B allows variables to be declared as vectors of bits of any fixed length.

The function and predicate symbols in the theory include extraction, concatenation, bitwise Boolean operations, and arithmetic operations.

It is easy to see that the decision problem in T_B is NP-complete by a simple reduction to SAT.

The challenge for this theory is to come up with more efficient solvers than the naïve conversion to SAT.
The Nelson-Oppen Method

A very general method for combining decision procedures is the \textit{Nelson-Oppen} method.

This method is applicable when

1. The signatures Σ_i are disjoint.

2. The theories T_i are stably-infinite.

 A Σ-theory T is \textit{stably-infinite} if every T-satisfiable quantifier-free Σ-formula is satisfiable in an infinite model.

3. The formulas to be tested for satisfiability are quantifier-free.

In practice, only the third requirement is a significant restriction.
The Nelson-Oppen Method

The Nelson-Oppen method restricts its attention to conjunctions of literals.

We’ll talk about the more general case later.

Before presenting the method, we need a couple of definitions:

- A formula or term is \textit{i-pure} if it only contains symbols from signature Σ_i.

- If S is a set of terms and \sim is an equivalence relation on S, then the \textit{arrangement of S induced by \sim} is $\{x = y \mid x \sim y\} \cup \{x \neq y \mid x \not\sim y\}$.
The Nelson-Oppen Method

Now we can explain step one of the Nelson-Oppen method:

1. Conversion to Separate Form

Given a conjunction of literals, ϕ, we desire to convert it into a separate form: a T-equisatisfiable conjunction of literals $\phi_1 \land \phi_2 \land \ldots \land \phi_n$, where each ϕ_i is i-pure.

The following algorithm accomplishes this.

1. Let ψ be some literal in ϕ.

2. If ψ is i-pure, for some i, remove ψ from ϕ and add ψ to ϕ_i; if ϕ is empty then stop; otherwise go to step 1.

3. Let t be a non-variable term in ψ. Replace t in ϕ with a new variable z, and add $z = t$ to ϕ. Go to step 1.
The Nelson-Oppen Method

It is easy to see that ϕ is T-satisfiable iff $\phi_1 \land \ldots \land \phi_n$ is T-satisfiable.

Furthermore, because each ϕ_i is a Σ_i-formula, we can run Sat_i on each ϕ_i.

Clearly, if Sat_i reports that any ϕ_i is unsatisfiable, then ϕ is unsatisfiable.

But the converse is not true in general.

Example: $f(0) \neq f(1 - 1)$

We need a way for the decision procedures to communicate with each other about shared variables.
The Nelson-Oppen Method

Suppose that T_1 and T_2 are theories with disjoint signatures Σ_1 and Σ_2 respectively. Let $T = Cn \bigcup T_i$ and $\Sigma = \bigcup \Sigma_i$. Given a Σ-formula ϕ and decision procedures Sat_1 and Sat_2 for T_1 and T_2 respectively, we wish to determine if ϕ is T-satisfiable. The non-deterministic Nelson-Oppen algorithm for this is as follows:

1. Convert ϕ to its separate form $\phi_1 \land \phi_2$.

2. Let Λ be the set of variables shared between ϕ_1 and ϕ_2. Guess an equivalence relation \sim on Λ.

3. Run Sat_1 on $\phi_1 \cup Ar_{\sim}$.

4. Run Sat_2 on $\phi_2 \cup Ar_{\sim}$.

If there exists an equivalence relation \sim such that both Sat_1 and Sat_2 succeed, then we claim that ϕ is T-satisfiable.

If no such equivalence relation exists, then we claim that ϕ is T-unsatisfiable.

The generalization to more than two theories is straightforward.
Example

Consider the combination of the theory T_Z with the theory T_E of equality.

Let $\phi = 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$.

Is this satisfiable?
Example

Consider the combination of the theory T_Z with the theory T_E of equality.

Let $\phi = 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$.

Is this satisfiable? No.
Example

Consider the combination of the theory T_Z with the theory T_E of equality.

Let $\phi = 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$.

Is this satisfiable? **No.**

To determine this using the above algorithm, we first convert ϕ to a separate form:

$\phi_Z = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$
$\phi_E = f(x) \neq f(y) \land f(x) \neq f(z)$

Now, the shared variables are $\{x, y, z\}$. There are 5 possible arrangements based on equivalence classes of $x, y,$ and z:

1. $\{x = y, x = z, y = z\}$
2. $\{x = y, x \neq z, y \neq z\}$
3. $\{x \neq y, x = z, y \neq z\}$
4. $\{x \neq y, x \neq z, y = z\}$
5. $\{x \neq y, x \neq z, y \neq z\}$
Example

Consider the combination of the theory T_Z with the theory T_E of equality.

Let $\phi = 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$.

Is this satisfiable? **No.**

To determine this using the above algorithm, we first convert ϕ to a separate form:

$\phi_Z = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$

$\phi_E = f(x) \neq f(y) \land f(x) \neq f(z)$

Now, the shared variables are $\{x, y, z\}$. There are 5 possible arrangements based on equivalence classes of $x, y,$ and z:

1. $\{x = y, x = z, y = z\}$: inconsistent with ϕ_E.
2. $\{x = y, x \neq z, y \neq z\}$
3. $\{x \neq y, x = z, y \neq z\}$
4. $\{x \neq y, x \neq z, y = z\}$
5. $\{x \neq y, x \neq z, y \neq z\}$
Example

Consider the combination of the theory T_Z with the theory T_E of equality.

Let $\phi = 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$.

Is this satisfiable? No.

To determine this using the above algorithm, we first convert ϕ to a separate form:

$\phi_Z = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$

$\phi_E = f(x) \neq f(y) \land f(x) \neq f(z)$

Now, the shared variables are $\{x, y, z\}$. There are 5 possible arrangements based on equivalence classes of $x, y, \text{ and } z$:

1. $\{x = y, x = z, y = z\}$: inconsistent with ϕ_E.
2. $\{x = y, x \neq z, y \neq z\}$: inconsistent with ϕ_E.
3. $\{x \neq y, x = z, y \neq z\}$
4. $\{x \neq y, x \neq z, y = z\}$
5. $\{x \neq y, x \neq z, y \neq z\}$
Example

Consider the combination of the theory T_Z with the theory T_E of equality.

Let $\phi = 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$.

Is this satisfiable? No.

To determine this using the above algorithm, we first convert ϕ to a separate form:

$\phi_Z = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$

$\phi_E = f(x) \neq f(y) \land f(x) \neq f(z)$

Now, the shared variables are $\{x, y, z\}$. There are 5 possible arrangements based on equivalence classes of x, y, and z:

1. $\{x = y, x = z, y = z\}$: inconsistent with ϕ_E.
2. $\{x = y, x \neq z, y \neq z\}$: inconsistent with ϕ_E.
3. $\{x \neq y, x = z, y \neq z\}$: inconsistent with ϕ_E.
4. $\{x \neq y, x \neq z, y = z\}$
5. $\{x \neq y, x \neq z, y \neq z\}$
Example

Consider the combination of the theory T_Z with the theory T_E of equality.

Let $\phi = 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$.

Is this satisfiable? **No.**

To determine this using the above algorithm, we first convert ϕ to a separate form:

$$\phi_Z = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$$

$$\phi_E = f(x) \neq f(y) \land f(x) \neq f(z)$$

Now, the shared variables are $\{x, y, z\}$. There are 5 possible arrangements based on equivalence classes of x, y, and z:

1. $\{x = y, x = z, y = z\}$: inconsistent with ϕ_E.
2. $\{x = y, x \neq z, y \neq z\}$: inconsistent with ϕ_E.
3. $\{x \neq y, x = z, y \neq z\}$: inconsistent with ϕ_E.
4. $\{x \neq y, x \neq z, y = z\}$: inconsistent with ϕ_Z.
5. $\{x \neq y, x \neq z, y \neq z\}$
Example

Consider the combination of the theory T_Z with the theory T_E of equality.

Let $\phi = 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$.

Is this satisfiable? No.

To determine this using the above algorithm, we first convert ϕ to a separate form:

$$\phi_Z = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$$

$$\phi_E = f(x) \neq f(y) \land f(x) \neq f(z)$$

Now, the shared variables are $\{x, y, z\}$. There are 5 possible arrangements based on equivalence classes of x, y, and z:

1. $\{x = y, x = z, y = z\}$: inconsistent with ϕ_E.
2. $\{x = y, x \neq z, y \neq z\}$: inconsistent with ϕ_E.
3. $\{x \neq y, x = z, y \neq z\}$: inconsistent with ϕ_E.
4. $\{x \neq y, x \neq z, y = z\}$: inconsistent with ϕ_Z.
5. $\{x \neq y, x \neq z, y \neq z\}$: inconsistent with ϕ_Z.
Example

Consider the combination of the theory T_Z with the theory T_E of equality.

Let $\phi = 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$.

Is this satisfiable? No.

To determine this using the above algorithm, we first convert ϕ to a separate form:

$\phi_Z = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2$

$\phi_E = f(x) \neq f(y) \land f(x) \neq f(z)$

Now, the shared variables are $\{x, y, z\}$. There are 5 possible arrangements based on equivalence classes of x, y, and z:

1. $\{x = y, x = z, y = z\}$: inconsistent with ϕ_E.
2. $\{x = y, x \neq z, y \neq z\}$: inconsistent with ϕ_E.
3. $\{x \neq y, x = z, y \neq z\}$: inconsistent with ϕ_E.
4. $\{x \neq y, x \neq z, y = z\}$: inconsistent with ϕ_Z.
5. $\{x \neq y, x \neq z, y \neq z\}$: inconsistent with ϕ_Z.

This example is in combining.ml.
Correctness of Nelson-Oppen

We define an interpretation of a signature Σ to be a model of Σ together with a variable assignment.

Two interpretations A and B are isomorphic if there exists an isomorphism h of the model of A into the model of B and $h(x^A) = x^B$ for each variable x (where x^A signifies the value assigned to x by the variable assignment of A).

We furthermore define $A^{\Sigma,V}$ to be the restriction of A to the symbols in Σ and the variables in V.

Theorem

Let Σ_1 and Σ_2 be signatures, and for $i = 1, 2$, let ϕ_i be a set of Σ_i-formulas, and V_i the set of variables appearing in ϕ_i. Then $\phi_1 \cup \phi_2$ is satisfiable iff there exists a Σ_1-interpretation A satisfying ϕ_1 and a Σ_2-interpretation B satisfying ϕ_2 such that:

$$A^{\Sigma_1 \cap \Sigma_2, V_1 \cap V_2} \text{ is isomorphic to } B^{\Sigma_1 \cap \Sigma_2, V_1 \cap V_2}.$$
Correctness of Nelson-Oppen

Proof

Let \(\Sigma = \Sigma_1 \cap \Sigma_2 \) and \(V = V_1 \cap V_2 \).

Suppose \(\phi_1 \cup \phi_2 \) is satisfiable. Let \(M \) be an interpretation satisfying \(\phi_1 \cup \phi_2 \). If we let \(A = M^{\Sigma_1,V_1} \) and \(B = M^{\Sigma_2,V_2} \), then clearly

- \(A \models \phi_1 \)
- \(B \models \phi_2 \)
- \(A^{\Sigma,V} \) is isomorphic to \(B^{\Sigma,V} \)

On the other hand, suppose that we have \(A \) and \(B \) satisfying the three conditions listed above. Let \(h \) be an isomorphism from \(A^{\Sigma,V} \) to \(B^{\Sigma,V} \).

We define an interpretation \(M \) as follows:

- \(\text{dom}(M) = \text{dom}(A) \)
- For each variable or constant \(u \), \(u^M = \begin{cases} u^A & \text{if } u \in (\Sigma^C_1 \cup V_1) \\ h^{-1}(u^B) & \text{otherwise} \end{cases} \)
Correctness of Nelson-Oppen

- For function symbols of arity n,
 \[
 f^M(a_1, \ldots, a_n) = \begin{cases}
 f^A(a_1, \ldots, a_n) & \text{if } f \in \Sigma^F_1 \\
 h^{-1}(f^B(h(a_1), \ldots, h(a_n))) & \text{otherwise}
 \end{cases}
 \]

- For predicate symbols of arity n,
 \[
 (a_1, \ldots, a_n) \in P^M \iff (a_1, \ldots, a_n) \in P^A \quad \text{if } P \in \Sigma^P_1 \\
 (a_1, \ldots, a_n) \in P^M \iff (h(a_1), \ldots, h(a_n)) \in P^B \quad \text{otherwise}
 \]

By construction, M^{Σ_1, V_1} is isomorphic to A. In addition, it is easy to verify that h is an isomorphism of M^{Σ_2, V_2} to B.

It follows by the homomorphism theorem that M satisfies $\phi_1 \cup \phi_2$.
\[\square\]
Correctness of Nelson-Oppen

Theorem

Let Σ_1 and Σ_2 be signatures, with $\Sigma_1 \cap \Sigma_2 = \emptyset$, and for $i = 1, 2$, let ϕ_i be a set of Σ_i-formulas, and V_i the set of variables appearing in ϕ_i. As before, let $V = V_1 \cap V_2$. Then $\phi_1 \cup \phi_2$ is satisfiable iff there exists an interpretation A satisfying ϕ_1 and an interpretation B satisfying ϕ_2 such that:

1. $|A| = |B|$, and
2. $x^A = y^A$ iff $x^B = y^B$ for every pair of variables $x, y \in V$.

Proof

Clearly, if $\phi_1 \cup \phi_2$ is satisfiable in some interpretation M, then the only if direction holds by letting $A = M$ and $B = M$.

Consider the converse. Let $h : V^A \to V^B$ be defined as $h(x^A) = x^B$. This definition is well-formed by property 2 above.

In fact, h is bijective. To show that h is injective, let $h(a_1) = h(a_2)$. Then there exist variables $x, y \in V$ such that $a_1 = x^A$, $a_2 = y^A$, and $x^B = y^B$. By property 2, $x^A = y^A$, and therefore $a_1 = a_2$.
Correctness of Nelson-Oppen

To show that h is surjective, let $b \in V^B$. Then there exists a variable $x \in V^B$ such that $x^B = b$. But then $h(x^A) = b$.

Since h is bijective, it follows that $|V^A| = |V^B|$, and since $|A| = |B|$, we also have that $|A - V^A| = |B - V^B|$. We can therefore extend h to a bijective function h' from A to B.

By construction, h' is an isomorphism of A^V to B^V. Thus, by the previous theorem, we can obtain an interpretation satisfying $\phi_1 \cup \phi_2$.

\square
Correctness of Nelson-Oppen

We can finally prove the correctness of the nondeterministic Nelson-Oppen method.

Theorem

Let T_i be a stably-infinite Σ_i-theory, for $i = 1, 2$, and suppose that $\Sigma_1 \cap \Sigma_2 = \emptyset$. Also, let ϕ_i be a set of Σ_i literals, $i = 1, 2$, and let Λ be the set of variables appearing in both ϕ_1 and ϕ_2. Then $\phi_1 \cup \phi_2$ is $T_1 \cup T_2$-satisfiable iff there exists an equivalence relation \sim on Λ such that $\phi_i \cup Ar_{\sim}$ is T_i-satisfiable, $i = 1, 2$.

Proof

Suppose M is an interpretation satisfying $\phi_1 \cup \phi_2$. We define an equivalence relation $x \sim y$ iff $x, y \in \Lambda$ and $x^M = y^M$. By construction, M is a T_i-interpretation satisfying $\phi_i \cup Ar_{\sim}, i = 1, 2$.
Correctness of Nelson-Oppen

Suppose on the other hand that there exists an equivalence relation \sim of Λ such that $\phi_i \cup Ar \sim$ is T_i-satisfiable, $i = 1, 2$. Since T_1 is stably-infinite, there is an infinite interpretation A satisfying $\phi_1 \cup Ar \sim$. Similarly, there is an infinite interpretation B satisfying $\phi_2 \cup Ar \sim$.

But by LST, we can take the least upper bound of $|A|$ and $|B|$ and obtain interpretations of that cardinality.

Then we have $|A| = |B|$ and $x^A = y^A$ iff $x^B = y^B$ for every variable $x, y \in \Lambda$. We can thus apply the previous theorem and obtain the existence of a $(\Sigma_1 \cup \Sigma_2)$-interpretation satisfying $\phi_1 \cup \phi_2$.

\square