The Magic Behind It All: Finite Automata

• Recognizers: “yes” or “no” about each input string
• Two Flavors:
 – Non-deterministic Finite Automata (NFA)
 – Deterministic Finite Automata (DFA)
• Main parts
 – States
 • Start
 • Accepting or final
 – transitions
Which is Which?
NFA

- Finite set of states S
- Input alphabet Σ
- Transition function that gives for each state and for each $\Sigma \cup \{\epsilon\}$ a set of next states
- A starting state S_0
- A set of accepting or final states
Another Presentation of NFA: Transition Tables

We can easily find the transition +
- Lot of space
Acceptance of Input String

Input string x is accepted if and only if:

There is some path in the transition graph from start to one of the accepting states

Which of the following are accepted: $abb, aaa, aabb, aaabb, bbb$?
Example

- For the following NFA indicates all paths labeled $aabb$
DFA

- Special case of NFA
- No moves on ϵ
- For each state S, and input symbol a, there is exactly one edge out of s labeled a
```
s = s_0;
c = nextChar();
while ( c != eof ) {
    s = move(s, c);
    c = nextChar();
}
if ( s is in F ) return "yes";
else return "no";
```

"Yes" or "No"?

abba

babb

aababb

abbb
NFA -> DFA

• Subset construction: each state of DFA corresponds to a set of NFA states
• For real languages NFA and DFA have approximately the same number of states (although theory has another opinion!)
Let's Start With Some Definitions

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε-closure(s)</td>
<td>Set of NFA states reachable from NFA state s on ε-transitions alone.</td>
</tr>
<tr>
<td>ε-closure(T)</td>
<td>Set of NFA states reachable from some NFA state s in set T on ε-transitions</td>
</tr>
<tr>
<td>move(T, a)</td>
<td>Set of NFA states to which there is a transition on input symbol a from</td>
</tr>
</tbody>
</table>

```
0  ε  1  ε  2  a  3  ε  ε  6  ε  ε  ε  ε  7  a  8  b  9  b  10
```

ε

start
1) \(S = \epsilon\text{-closure}(s_0); \)
2) \(c = \text{nextChar}(); \)
3) while (\(c \neq \text{eof} \)) {
 \(S = \epsilon\text{-closure}(\text{move}(S, c)); \)
4) \(c = \text{nextChar}(); \)
5) }
6) if (\(S \cap F \neq \emptyset \)) return "yes";
7) else return "no";
Example

Simulate the following NFA on \textit{aabb}

What is the transition table of the above NFA?

1) \(S = \epsilon\text{-closure}(s_0); \)
2) \(c = \text{nextChar}(); \)
3) \(\text{while} \ (c \neq \text{eof}) \ \{ \)
4) \(\quad S = \epsilon\text{-closure}(\text{move}(S,c)); \)
5) \(\quad c = \text{nextChar}(); \)
6) \(\} \)
7) \(\text{if} \ (S \cap F \neq \emptyset) \ \text{return} \ "\text{yes}"; \)
8) \(\text{else} \ \text{return} \ "\text{no}"; \)
initially, ε-closure(s_0) is the only state in $Dstates$, and it is unmarked;

while (there is an unmarked state T in $Dstates$) {
 mark T;
 for (each input symbol a) {
 $U = \varepsilon$-closure($move(T, a)$);
 if (U is not in $Dstates$)
 add U as an unmarked state to $Dstates$;
 $Dtran[T, a] = U$;
 }
}

States of the DFA we are constructing
$(a|b)^*abb$
Regular Expression \rightarrow NFA
(McNaughton-Yamada-Thompson algorithm)

$r = a$

$r = s | t$

$r = st$

$r = s^*$
Example: \((a|b)^*abb\)
Example: \((a|b)^*abb\)

\(a|b\)

\((a|b)^*\)

\((a|b)^*a\)
Example: \((a|b)^*abb\)

\[(a|b)^*abb\]
State Minimization of DFA

• There can be many DFAs that recognize the same language.
• Smaller DFAs are more efficient (storage, speed)
• There is always a unique minimum state DFA
• This minimum-state DFA can be constructed from any DFA that recognizes the language.
How to Do It?

1. **Given DFA:** start with at least two subgroups: \(S \) and \(S-F \)

2. Repeat the following algorithm until no more progress can be made

```plaintext
initially, let \( \Pi_{\text{new}} = \Pi \);
for ( each group \( G \) of \( \Pi \) ) {
    partition \( G \) into subgroups such that two states \( s \) and \( t \)
    are in the same subgroup if and only if for all
    input symbols \( a \), states \( s \) and \( t \) have transitions on \( a \)
    to states in the same group of \( \Pi \);
    
    // at worst, a state will be in a subgroup by itself */
    replace \( G \) in \( \Pi_{\text{new}} \) by the set of all subgroups formed;
}
```
Example

\{A, B, C, D\} \{E\}

\{A, B, C\} \{D\} \{E\}

\{A, C\} \{B\} \{D\} \{E\}

<table>
<thead>
<tr>
<th>STATE</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>
Lexical Analyzer Generators

- Each regular expression \rightarrow NFA
- Combine all NFAs as
- In case of several matches
 - Pick longest
 - Pick earliest in file
\[a \quad \{ \text{action } A_1 \text{ for pattern } p_1 \} \]
\[a b \quad \{ \text{action } A_2 \text{ for pattern } p_2 \} \]
\[a^* b^+ \quad \{ \text{action } A_3 \text{ for pattern } p_3 \} \]
Lex

• Based on DFA not NFA
• Handling lookahead
• For state minimization, initial partition:
 – groups all states that recognizes a particular token
 – places in one group those states that do not indicate any token
Initial partitioning: \{0137, 7\}\{247\}\{8, 58\}\{7\}\{68\}\{\emptyset\}
So

• We have covered Sections 3.6 -> 3.9
• Skim: 3.7.3, 3.7.5, 3.9.1->3.9.5 and 3.9.8
• Read carefully the rest of: 3.6, 3.7, 3.8, 3.9.6, and 3.9.7