Consider the following simple model for disease diagnosis. We make the following assumptions:

- There are N possible symptoms (including test results) which in this problem we will take, unrealistically, to be Boolean – i.e. you either have the symptom or you don’t; the test either succeeds or fails.
- There are M diseases under consideration.
- Symptoms are conditionally independent given the disease.
- Any patient has exactly one diagnosis.
- There are Q different treatments. A patient can be given a single treatment. We will similarly assume, unrealistically, that the effectiveness of a treatment is Boolean; either a treatment entirely cures the disease or it is useless.

The \textit{symptom matrix} is an $M \times N$ matrix P of probabilities: $P[I, J] = \text{Prob}(J|I)$, the probability that a patient exhibits symptom J given that he has disease I.

\textbf{Problem 1}

A \textit{patient record} is a Boolean vector of length N indicating the patient's symptoms. Write a function $\text{RecProb}(R, P)$ that takes as arguments a patient record R and a symptom matrix P and returns a vector D of length M such that $D[I] = \text{Prob}(R|I)$ for each disease I.

\textbf{Problem 2}

The \textit{frequency} vector is a vector F of length M such that $F[I]$ is the frequency of disease I in the population at large. Write a function $\text{Diagnose}(R, P, F)$ which returns a vector D of length M such that $D[I] = \text{Prob}(I|R)$, the probability that a patient with symptoms R has disease I. Use Bayes’ law. Include the normalizing factor.

\textbf{Problem 3}

A \textit{treatment efficacy} matrix is a $Q \times M$ matrix T where $T[I, J]$ is the probability that treatment I will cure disease J. Assume that the event that I cures J is independent of the event that J manifests symptom K; that is, given that a patient has a particular disease, the effectiveness of the treatment is not affected by the particular symptoms he is manifesting. Write a function $\text{Prognosis}(R, P, F, T)$ which returns a vector W of length Q, where $W[I]$ is the probability that a patient with symptoms R will be cured of his disease by treatment I.
Problem 4

A disease cost vector is a vector $C[I]$ of length M indicating the cost of leaving disease I uncured. (We will assume that this depends on the disease, rather than on the symptoms.) A treatment cost vector is a vector $B[I]$ of length Q, where indicating the cost of attempting treatment I. (Of course, for both of these, “cost” should be interpreted broadly as including all the undesirable consequences.)

Write a function $\text{Benefit}(R,P,F,T,C,B)$ which returns a vector $A[I]$ which is the expected benefit of applying treatment I to a patient with symptoms R. Note that the benefit of curing the disease applies only if the disease is cured, whereas the cost of the treatment applies whether or not the disease is cured.