Review

Last week

- Types

Outline

- ML

Sources:

ML overview

- originally developed for use in writing theorem provers
- functional: functions are first-class values
- garbage collection
- strong and static typing; powerful type system
 - parametric polymorphism (somewhat like ADA generics)
 - structural equivalence
 - all with type inference!
- advanced module system
- exceptions
- miscellaneous features:
 - datatypes (merge of enumerated literals and variant records)
 - pattern matching
 - references (like “const pointers”)
A sample SML/NJ interactive session

- **val** k = 5;

 `user input`

- **val** k = 5 : int

 `system response`

- k * k * k;

 `system response`

- **val** it = 125 : int

 `'it' denotes the last computation`

- [1, 2, 3];

 `system response`

- **val** it = [1,2,3] : int list

 `system response`

- ["hello", "world"];

 `system response`

- **val** it = ["hello","world"] : string list

 `system response`

- 1 :: [2, 3];

 `system response`

- **val** it = [1,2,3] : int list

 `system response`

Simple functions

A function **declaration**:

- **fun** abs x = if x >= 0.0 then x else ~x;

 `val` abs = **fn** : real -> real

A function **expression**

- **fn** x => if x >= 0.0 then x else ~x;

 `val` it = **fn** : real -> real

fn is like **lambda** in **SCHEME**.

Operations on lists

- null [1, 2];

 `val` it = false : bool

- null [];

 `val` it = true : bool

- hd [1, 2, 3];

 `val` it = 1 : int

- tl [1, 2, 3];

 `val` it = [2, 3] : int list

- [];

 `val` it = [] : 'a list

 `this list is polymorphic`

Functions

- **fun** length xs =

 `if` null xs

 then 0

 else 1 + length (tl xs);

 `val` length = **fn** : 'a list -> int

 `'a` denotes a type variable; **length** can be applied to lists of **any** element type

The same function, written in pattern-matching style:

- **fun** length [] = 0

 | length (x::xs) = 1 + length xs;

 `val` length = **fn** : 'a list -> int
Type inference and polymorphism

Advantages of type inference and polymorphism:

- frees you from having to write types.
 A type can be more complex than the expression whose type it is, e.g., \texttt{flip}

- with type inference, you get polymorphism for free:
 - no need to specify that a function is polymorphic
 - no need to “instantiate” a polymorphic function when it is applied

The tuple solution

Another function; takes two lists and yields their concatenation

- \texttt{fun append1 ([], ys) = ys}
 \hspace{1em} | append1 (x::xs, ys) = x :: append1 (xs, ys);

\texttt{val append1 = fn: ’a list * ’a list -> ’a list}

- append1 ([1,2,3], [8,9]);
\texttt{val it = [1,2,3,8,9] : int list}

Multiple arguments?

- All functions in ML take exactly one argument
- If a function needs multiple arguments, we can
 1. pass a tuple:

\texttt{-(53, ”hello”); (*a tuple *)}
\texttt{val it = (53, ”hello”) : int * string}

- We can also use tuples to return multiple results.

 2. use \texttt{currying} (named after Haskell Curry, a logician)

Currying

The same function, written in curried style:

- \texttt{fun append2 [] ys = ys}
 \hspace{1em} | append2 (x::xs) ys = x :: (append2 xs ys);

\texttt{val append2 = fn: ’a list -> ’a list -> ’a list}

- append2 [1,2,3] [8,9];
\texttt{val it = [1,2,3,8,9] : int list}

- \texttt{val app123 = append2 [1,2,3];}
\texttt{val app123 = fn : int list -> int list}

- app123 [8,9];
\texttt{val it = [1,2,3,8,9] : int list}
More partial application

But what if we want to provide the other argument instead, i.e. append \([8, 9]\) to its argument?

- here is one way: (the Ada/C++/Java way)
 \[
 \texttt{fun appTo89 xs} = \texttt{append2 xs [8,9]};
 \]
- here is another: (using a higher-order function)
 \[
 \texttt{val appTo89 = flip append2 [8,9]};
 \]

\texttt{flip} is a function which takes a curried function and “flips” its two arguments. We define it on the next slide...

Type inference example

\[
\texttt{fun flip f y x} = f x y
\]

The type of \texttt{flip} is \((α → β → γ) → β → α → γ\). Why?

- Consider \((f x)\). \(f\) is a function; its argument has the same type as \(x\).
 \[
 f : A → B \quad x : A \quad (f x) : B
 \]
- Now consider \((f x y)\). Because function application is left-associative, \((f x y) \equiv (f x) y\). Therefore, \((f x)\) must be a function, and its argument must have the same type as \(y\): \((f x) : C → D\)
 \[
 y : C \quad (f x y) : D
 \]
- Note that \(B\) must be the same as \(C → D\). We say that \(B\) must unify with \(C → D\).
- The return type of \texttt{flip} is whatever the type of \((f x y)\) is. After renaming the types, we have the type given at the top.

Type rules

The type system is defined in terms of inference rules. For example, here is the rule for variables:

\[
\frac{(x : τ) \in E}{E ⊢ x : τ}
\]

and the one for function calls:

\[
\frac{E ⊢ e_1 : τ' → τ \quad E ⊢ e_2 : τ'}{E ⊢ e_1 e_2 : τ}
\]

and here is the rule for \texttt{if} expressions:

\[
\frac{E ⊢ e : \text{bool} \quad E ⊢ e_1 : τ \quad E ⊢ e_2 : τ}{E ⊢ \text{if } e \text{ then } e_1 \text{ else } e_2 : τ}
\]

Passing functions

- \texttt{fun exists pred []} = false
 \[
 | \texttt{exists pred (x::xs)} = \texttt{pred x orelse exists pred xs};
 \]
- \texttt{val exists} = \texttt{fn} : (‘a → bool) → ‘a list → bool

- \texttt{pred} is a predicate: a function that returns a boolean
- \texttt{exists} checks whether \texttt{pred} is true for any member of the list

- \texttt{exists (fn i => i = 1) [2, 3, 4]};
- \texttt{val it} = \texttt{false} : bool
Applying functionals

- \(\text{exists (fn } i \Rightarrow i = 1) \ [2, 3, 4] \);

\[\text{val it = false : bool} \]

Now partially apply \texttt{exists}:

- \[\text{val hasOne = exists (fn } i \Rightarrow i = 1); \]

\[\text{val hasOne = fn : int list \to bool} \]

- hasOne [3,2,1];

\[\text{val it = true : bool} \]

Functionals 2

fun \(\text{all pred [] = true} \)
| \(\text{all pred (x::xs) = pred x andalso all pred xs;} \)

fun \(\text{filter pred [] = []} \)
| \(\text{filter pred (x::xs) = if pred x} \)
| \(\text{then x :: filter pred xs} \)
| \(\text{else filter pred xs;} \)

all : (\(\alpha \to \text{bool} \)) \to \(\alpha \text{ list \to bool} \)

filter : (\(\alpha \to \text{bool} \)) \to \(\alpha \text{ list \to \alpha list} \)

Block structure and nesting

Let provides local scope:

\(* \text{standard Newton-Raphson *})

fun findroot (a, x, acc) =
 let val nextx = (a / x + x) / 2.0
 (* nextx is the next approximation *)
 in
 if abs (x - nextx) < acc * x
 then nextx
 else findroot (a, nextx, acc)
 end;

A classic in functional form: quicksort

fun \(\text{qSort op< [] = []} \)
| \(\text{qSort op< [x] = [x]} \)
| \(\text{qSort op< (a::bs) =} \)
 let fun partition (left, right, []) =
 (left, right) (* done partitioning *)
 | partition (left, right, x::xs) =
 (* put x to left or right *)
 if x < a
 then partition (x::left, right, xs)
 else partition (left, x::right, xs)
 val (left, right) = partition ([], [a], bs)
 in
 qSort op< left @ qSort op< right
 end;

qSort : (\(\alpha \to \alpha \to \text{bool} \)) \to \(\alpha \text{ list \to \alpha list} \)
Another variant of mergesort

fun qSort op< [] = []
| qSort op< [x] = [x]
| qSort op< (a::bs) =
 let fun deposit (x, (left, right)) =
 if x < a
 then (x::left, right)
 else (left, x::right)
 val (left, right) = foldr deposit ([], [a]) bs
 in
 qSort op< left @ qSort op< right
 end;

qSort : (α * α → bool) → α list → α list

The type system

- primitive types: bool, int, char, real, string, unit
- constructors: list, array, product (tuple), function, record
- "datatypes": a way to make new types
- structural equivalence (except for datatypes)
 - as opposed to name equivalence in e.g. Ada
- an expression has a corresponding type expression
- the interpreter builds the type expression for each input
- type checking requires that type of functions' parameters match the type of their arguments, and that the type of the context matches the type of the function's result

ML records

Records in ML obey structural equivalence (unlike records in many other languages).

A type declaration: only needed if you want to refer to this type by name

type vec = { x : real, y : real };

A variable declaration:

val v = { x = 2.3, y = 4.1 };

Field selection:

#x v;

Pattern matching in a function:

fun dist (x,y) =
 sqrt (pow (x, 2.0) + pow (y, 2.0));

Datatypes

A datatype declaration:

- defines a new type that is not equivalent to any other type (like name equivalence)
- introduces data constructors
 - data constructors can be used in patterns
 - they are also values themselves
Datatype example

```
datatype tree = Leaf of int
  | Node of tree * tree;
```

Leaf and Node are data constructors:

- Leaf : int → tree
- Node : tree * tree → tree

Pattern Matching

We can define functions by pattern matching:

```
fun sum (Leaf t) = t
  | sum (Node (t1, t2)) = sum t1 + sum t2;

fun flatten (Leaf t) = [t]
  | flatten (Node (t1, t2)) = flatten t1 @ flatten t2;
```

flatten : tree → int list

Parameterized datatypes

```
datatype 'a gentree =
  Leaf of 'a
  | Node of 'a gentree * 'a gentree;
```

```
val names = Node (Leaf "this", Leaf "that")
```

names : string gentree

The rules of pattern matching

Pattern elements:

- integer literals: 4, 19
- character literals: #’a’
- string literals: "hello"
- data constructors: Node (\cdots)
 - depending on type, may have arguments, which would also be patterns
- variables: x, ys
- wildcard: _

Convention is to capitalize data constructors, and start variables with lower-case.
More rules of pattern matching

Special forms:

- (){}, the unit value
- [], the empty list
- [p1, p2, \ldots, pn], means (p1 :: (p2 :: \ldots :: ([])\ldots))
- (p1, p2, \ldots, pn), a tuple
- {field1, field2, \ldots fieldn}, a record
- {field1, field2, \ldots fieldn, \ldots}, a partially specified record
- v as p, v is a name for the entire pattern p

Common idiom: option

option is a built-in datatype:

```plaintext
datatype 'a option = NONE | SOME of 'a;
```

Defining a simple lookup function:

```plaintext
fun lookup eq key [] = NONE
| lookup eq key ((k,v)::kvs) = if eq (key, k)
then SOME v
else lookup eq key kvs;
```

Is the type of `lookup`:

```
(\alpha \rightarrow \beta \rightarrow bool) \rightarrow \alpha \rightarrow (\alpha \rightarrow \beta) list \rightarrow \beta option?
```

No! It's slightly more general:

```
(\alpha_1 \rightarrow \alpha_2 \rightarrow bool) \rightarrow \alpha_1 \rightarrow (\alpha_2 \rightarrow \beta) list \rightarrow \beta option
```

Useful library functions

- map : (\alpha \rightarrow \beta) \rightarrow \alpha list \rightarrow \beta list
  ```plaintext
  map (fn i => i + 1) [7, 15, 3] 
  \Longrightarrow [8, 16, 4]
  ```
- foldl : (\alpha \rightarrow \beta \rightarrow \beta) \rightarrow \beta \rightarrow \alpha list \rightarrow \beta
  ```plaintext
  foldl (fn (a,b) => "(\ ^ a \ ^ + \ ^ b \ ^ )")
  "0" ["1", "2", "3"] 
  \Longrightarrow "(3+(2+(1+0)))"
  ```
- foldr : (\alpha \rightarrow \beta \rightarrow \beta) \rightarrow \beta \rightarrow \alpha list \rightarrow \beta
  ```plaintext
  foldr (fn (a,b) => "(" ^ a ^ + ^ b ^ ")")
  "0" ["1", "2", "3"] 
  \Longrightarrow "(1+(2+(3+0)))"
  ```
- filter : (\alpha \rightarrow bool) \rightarrow \alpha list \rightarrow \alpha list
  ```plaintext
  ```
Overloading

Ad hoc overloading interferes with type inference:

```ml
fun plus x y = x + y;
```

Operator `+` is overloaded, but types cannot be resolved from context (defaults to int).

We can use explicit typing to select interpretation:

```ml
fun mix1 (x, y, z) = x*y + z : real;
fun mix2 (x: real, y, z) = x*y + z;
```

Parametric polymorphism vs. generics

- a function whose type expression has type variables applies to an infinite set of types
- equality of type expressions means structural not name equivalence
- all applications of a polymorphic function use the same body: no need to instantiate

```ml
let val ints = [1, 2, 3];
val strs = ["this", "that"];
in
  len ints + (* int list -> int *)
  len strs (* string list -> int *)
end;
```

ML signature

An ML signature specifies an interface for a module.

```ml
signature STACKS =
sig
  type stack
  exception Underflow
  val empty : stack
  val push : char * stack -> stack
  val pop : stack -> char * stack
  val isEmpty : stack -> bool
end;
```

ML structure

```ml
structure Stacks : STACKS =
struct
  type stack = char list
  exception Underflow
  val empty = [ ]
  val push = op::
  fun pop (c::cs) = (c, cs)
      | pop [] = raise Underflow
  fun isEmpty [] = true
      | isEmpty _ = false
end;
```