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1 Introduction

The dictionary data structure is ubiquitous in computer science. A dictionary
is used for maintaining a set S under insertion and deletion of elements (re-
ferred to as keys) from a universe U . Membership queries (“x ∈ S?”) provide
access to the data. In case of a positive answer the dictionary also provides a
piece of satellite data that was associated with x when it was inserted. In the
following we let n denote |S|.

The most efficient dictionaries, in theory and in practice, are based on hash-
ing techniques. The main performance parameters are of course lookup time,
update time, and space. The constant factors involved are crucial for many
applications. In particular, lookup time is a critical parameter. It is well known
that, by using a simple universal hash function, the expected number of mem-
ory probes for all dictionary operations can be made arbitrarily close to 1 if
a sufficiently sparse hash table is used. Therefore the challenge is to combine
speed with a reasonable space usage. In particular, we only consider schemes
using O(n) words of space. Section 3 surveys the literature on such dictionar-
ies.

The contribution of this paper is a new hashing scheme called Cuckoo Hash-

ing, which possesses the same theoretical properties as the classic dictionary
of Dietzfelbinger et al. [10], but is much simpler. The scheme has worst case

constant lookup time and amortized expected constant time for updates. Fur-
thermore, the space usage is roughly 2n words, which should be compared
with the 35n words used in [10]. This means that the space usage is similar to
that of binary search trees. A special feature of our lookup procedure is that
(disregarding accesses to an asymptotically small hash function description)
there are just two memory accesses, which are independent and can be done
in parallel if this is supported by the hardware.

Using weaker hash functions than those required for our analysis, Cuckoo

Hashing is very simple to implement. Section 4 describes such an implemen-
tation, and reports on experiments and comparisons with the most commonly
used hashing methods, having no nontrivial worst case guarantee on lookup
time. It seems that such an experiment, performed on a modern multi-level
memory architecture, has not previously been described in the literature. Our
experiments show Cuckoo Hashing to be quite competitive, especially when
the dictionary is small enough to fit in cache. We thus believe it to be attractive
in practice, when a worst case guarantee on lookups is desired. In contrast, the
hashing scheme of [10] is known to exhibit high constant factors. The LEDA
library of efficient data structures and algorithms [25] now incorporates an
implementation of Cuckoo Hashing based on ours.
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1.1 Preliminaries

As in most other theoretical works on hashing we consider the case where keys
are bit strings in U = {0, 1}w and w is the word length of the computer (for
theoretical purposes modeled as a RAM). If keys are longer, two things should
be changed. 1. The keys should be stored outside the hash table, and hash table
cells should contain pointers to keys. 2. Hashing of long keys should be handled
using a standard technique, described for completeness in Appendix A.

It is usually, though not always, clear how to return associated information
once membership has been determined. E.g., in the hash table based methods
discussed in this paper, the associated information of x ∈ S can be stored to-
gether with x in a hash table. Therefore we disregard the time and space used
to handle associated information and concentrate on the problem of maintain-
ing S. We will reserve a special value ⊥ ∈ U to signal an empty cell in hash
tables.

Our algorithm uses hash functions from a universal family. We use the follow-
ing well-known generalization of the original notion of Carter and Wegman [7].

Definition 1 A family {hi}i∈I , hi : U → R, is (c, k)-universal if, for any k
distinct elements x1, . . . , xk ∈ U , any y1, . . . , yk ∈ R, and uniformly random

i ∈ I, Pr[hi(x1) = y1, . . . , hi(xk) = yk] ≤ c/|R|k.

2 Cuckoo Hashing

Cuckoo Hashing is a dynamization of a static dictionary described in [26].
The dictionary uses two hash tables, T1 and T2, each consisting of r words,
and two hash functions h1, h2 : U → {0, . . . , r − 1}. Every key x ∈ S is stored
either in cell h1(x) of T1 or in cell h2(x) of T2, but never in both. Our lookup
function is

function lookup(x)
return T1[h1(x)] = x ∨ T2[h2(x)] = x

end

Two table accesses for lookup is in fact optimal among all dictionaries using
linear space, except for special cases, see [26].

It is shown in [26] that if r ≥ (1+ ε) n for some constant ε > 0 (i.e., the tables
are a bit less than half full), and h1, h2 are picked uniformly at random from
an (O(1), O(log n))-universal family, the probability that there is no way of
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Fig. 1. Examples of Cuckoo Hashing insertion. Arrows show possibilities for mov-
ing keys. (a) Key x is successfully inserted by moving keys y and z from one table
to the other. (b) Key x cannot be accommodated and a rehash is necessary.

arranging the keys of S according to h1 and h2 is O(1/n). A suitable arrange-
ment of the keys was shown in [26] to be computable in expected linear time,
by a reduction to 2-sat.

We now consider a simple dynamization of the above, still assuming r ≥
(1 + ε) n for some constant ε > 0. Deletion is of course simple to perform in
constant time, not counting the possible cost of shrinking the tables if they are
becoming too sparse. As for insertion, it turns out that the “cuckoo approach”,
kicking other keys away until every key has its own “nest”, works very well.
Specifically, if x is to be inserted we first see if cell h1(x) of T1 is occupied. If
not, we are done. Otherwise we set T1[h1(x)] ← x anyway, thus making the
previous occupant “nestless”. This key is then inserted in T2 in the same way,
and so forth iteratively, see Figure 1(a).

It may happen that this process loops, as shown in Figure 1(b). Therefore
the number of iterations is bounded by a value “MaxLoop” to be specified
in Section 2.3. If this number of iterations is reached, we rehash the keys in
the tables using new hash functions, and try once again to accommodate the
nestless key. There is no need to allocate new tables for the rehashing: We
may simply run through the tables to delete and perform the usual insertion
procedure on all keys found not to be at their intended position in the table.
(Note that kicking away a key that is not in its intended position simply
corresponds to starting a new insertion of this key.)

Using the notation x ↔ y to express that the values of variables x and y are
swapped, the following code summarizes the insertion procedure.
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procedure insert(x)
if lookup(x) then return
loop MaxLoop times

x ↔ T1[h1(x)]
if x = ⊥ then return
x ↔ T2[h2(x)]
if x = ⊥ then return

end loop
rehash(); insert(x)

end

The procedure assumes that each table remains larger than (1 + ε) n cells.
When no such bound is known, a test must be done to find out when a
rehash to larger tables is needed. Resizing of tables can be done in amortized
expected constant time per update by the usual doubling/halving technique
(see, e.g., [10]).

If the hash tables have size r, we enforce that no more than r2 insertions
are performed without changing the hash functions. More specifically, if r2

insertions have been performed since the beginning of the last rehash, we
force a new rehash.

2.1 Hash functions

By a result of Siegel [35] (detailed in Appendix A) we can construct a hash
function family that, when restricted to any set of r2 keys, is (1, nδ)-universal,
for some constant δ > 0, with probability 1−O(1/n2). Also, we can pick from
the family random functions h1 and h2 having constant evaluation time and
a description of o(n) words. Since there are at most r2 keys inserted using a
particular pair of hash functions this means that:

• With probability O(1/n2) the hash functions have some unspecified behavior
(i.e., we should expect the worst possible).

• Otherwise, the hash functions behave exactly as if they had been picked
from a (1, nδ)-universal family.

For n larger than some constant we will have MaxLoop < nδ, i.e., with high
probability the family will be (1, MaxLoop)-universal. This means that h1 and
h2 will act like truly random functions on any set of keys processed during the
insertion loop.
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2.2 Variants

The lookup call preceding the insertion loop ensures robustness if the key to
be inserted is already in the dictionary. A slightly faster implementation can
be obtained if this is known not to occur.

Note that the insertion procedure is biased towards inserting keys in T1. As
will be seen in Section 4 this leads to faster successful lookups, due to more
keys being found in T1. This effect is even more pronounced if one uses an
asymmetric scheme where T1 is larger than T2. In both cases, the insertion time
is only slightly worse than that of a completely symmetric implementation.

Another variant is to use a single table T of size 2r for both hash functions.
The results and analysis for this case are similar to what is described here for
the two table scheme. The following trick due to John Tromp [38] can be used
in this case to avoid keeping track of the hash function according to which
each key is placed: If we change the possible locations for key x to be h1(x)
and (h2(x)− h1(x)) mod 2r, we can jump from one location of x to the other
using the map i 7→ (h2(x) − i) mod 2r.

In the following we will consider just the symmetric two table scheme.

2.3 Analysis

As in all other analyses of randomized hashing schemes, we assume the oblivi-

ous adversary model, i.e., that the keys inserted are independent of the random
choices made by the algorithm.

Our analysis of the insertion procedure has three main parts:

(1) We first exhibit some useful characteristics of the behavior of the insertion
procedure.

(2) We then derive a bound on the probability that the insertion procedure
uses at least t iterations.

(3) Finally we argue that the procedure uses expected amortized constant
time.

Behavior of the Insertion Procedure

The simplest behavior of the insertion procedure occurs when it does not visit
any hash table cell more than once. In this case it simply runs through a
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sequence of nestless keys x1, x2, . . . with no repetitions, inserting x1 in T1 and
moving the remaining keys in the sequence from one table to the other.

If, at some point, the insertion procedure returns to a previously visited cell,
the behavior is more complicated, as shown in Figure 2. The key xi in the
first previously visited cell will become nestless for the second time (occurring
at positions i and j > i in the sequence) and be put back in its original cell.
Subsequently all keys xi−1, . . . , x2 will be moved back where they were at the
start of the insertion (assuming that the maximum number of iterations is
not reached). This means that x1 ends up nestless again, and the procedure
will try placing it in the second table. At some point after this there appears
a nestless key xl that is either moved to a vacant cell or a previously visited
cell (again assuming that the maximum number of iterations is not reached).
In the former case the procedure terminates. In the latter case a rehash must
be performed, since we have a “closed loop” of l − i + 1 keys hashing to only
l − i cells. This means that the loop will run for the maximum number of
iterations, followed by a rehash.

Lemma 1 Suppose that the insertion procedure does not enter a closed loop.

Then for any prefix x1, x2, . . . , xp of the sequence of nestless keys, there must

be a subsequence of at least p/3 consecutive keys without repetitions, starting

with an occurrence of the key x1, i.e., the key being inserted.

Proof. In the case where the insertion procedure never returns to a previously
visited cell, the prefix itself is a sequence of p distinct nestless keys starting
with x1. Otherwise, the sequence of nestless keys is as shown in Figure 2. If
p < i+j, the first j−1 ≥ i+j−1

2
≥ p/2 nestless keys form the desired sequence.

For p ≥ i + j, one of the sequences x1, . . . , xj−1 and xi+j−1, . . . , xp must have
length at least p/3. 2

Probability Bounds

We now consider the probability that the insertion loop runs for at least t
iterations. For t > MaxLoop the probability is of course 0. Otherwise, using the
above analysis, iteration number t may be performed in three (not mutually
exclusive) situations:

(1) The hash function family used is not (1, MaxLoop)-universal when re-
stricted to the set of keys in the dictionary (including the key being
inserted).

(2) The insertion procedure has entered a “closed loop”, i.e., xl in Figure 2
was moved to a previously visited cell, for l ≤ 2t.

(3) The insertion procedure has processed a sequence of at least (2t − 1)/3

7



xi+2

xi+1

x1 = xi+j−1

xi+j

x2 = xi+j−2

x3 = xi+j−3

xi = xj

xl

xj−2

xj−1

xi+1

xi = xj

xi−1 = xj+1

x2 = xi+j−2

x1 = xi+j−1

xi+j xl

xj−1

xj−3

xj−2

xi+1

xj−1

xi = xj

x3 = xi+j−3

x2 = xi+j−2

x1 = xi+j−1

xj+i xl

xj−3

xj−2

Fig. 2. Three stages of an insertion of key x1, involving the movement of keys
x1, . . . , xl. Boxes correspond to cells in either of the two tables, and arcs show
possibilities for moving keys. A bold arc shows where the nestless key is to be
inserted.

consecutive nestless keys starting with the newly inserted key.

We chose the hash function family such that the first situation occurs with
probability O(1/n2). Under the condition that the first situation does not

occur, we now bound the probability of the two last situations.
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In the second situation let v ≤ l denote the number of distinct nestless keys.
The number of ways in which the closed loop can be formed is less than
v3rv−1nv−1 (v2 possible values for i and j, v possible positions for xl ,rv−1

possible choices of cells, and nv−1 possible choices of keys other than x1). Since
v ≤ MaxLoop, the hash functions are (1, v)-universal. This means that each
possibility occurs with probability at most r−2v. Summing over all possible
values of v, and using r/n > 1 + ε, we get that the probability of situation 1
is at most:

l
∑

v=3

v3rv−1nv−1r−2v ≤
1

rn

∞
∑

v=3

v3(n/r)v = O(1/n2) .

The above derivation follows a suggestion of Sanders and Vöcking [32], and
improves the O(1/n) bound in the conference version of this paper [27].

In the third situation there is a sequence of v = d(2t − 1)/3e distinct nestless
keys b1, . . . , bv, such that b1 is the key to be inserted, and such that for either
(β1, β2) = (1, 2) or (β1, β2) = (2, 1):

hβ1
(b1) = hβ1

(b2), hβ2
(b2) = hβ2

(b3), hβ1
(b3) = hβ1

(b4), . . . (1)

Given b1 there are at most nv−1 possible sequences of v distinct keys. For any
such sequence and any of the two choices of (β1, β2), the probability that the
b − 1 equations in (1) hold is bounded by r−(v−1), since the hash functions
were chosen from a (1, MaxLoop)-universal family. Hence the probability that
there is any sequence of length v satisfying (1), and thus the probability of
situation 2, is bounded by

2 (n/r)v−1 ≤ 2 (1 + ε)−(2t−1)/3+1 . (2)

Concluding the Analysis

From the previous section it follows that the expected number of iterations in
the insertion loop is bounded by

1 +
MaxLoop

∑

t=2

(

2 (1 + ε)−(2t−1)/3+1 + O(1/n2)
)

(3)

≤ 1 + O(MaxLoop
n2 ) + 2

∞
∑

t=0

((1 + ε)−2/3)t

= O(1 + 1
1−(1+ε)−2/3 )

= O(1 + 1/ε) .
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Finally, we consider the cost of rehashing. First we consider only forced re-
hashes, caused by failed insertions. These occur if the insertion loop runs for
t = MaxLoop iterations. By the previous section, the probability that this hap-
pens because of entering a closed loop, or because the hash function family fails
to be (1, MaxLoop)-universal, is O(1/n2). Setting MaxLoop = d3 log1+ε re, the
probability of rehashing without entering a closed loop is, by (2), at most

2 (1 + ε)−(2MaxLoop−1)/3+1 = O(1/n2) .

Altogether, the probability that any given insertion causes a rehash is O(1/n2).
In particular, the n insertions performed during a rehash all succeed (i.e., cause
no further rehash) with probability 1 − O(1/n). The expected time used per
insertion is O(1), so the total expected time for trying to insert all keys is
O(n). If an insertion fails during the rehash, a recursive rehash is started.
Since we keep all keys in the tables all the time, this simply corresponds to
starting over with another attempt at rehashing all keys. As the probability
of having to start over with new hash functions is bounded away from 1, the
total expected time for a rehash sums to O(n). Thus, for any insertion the
expected time used for forced rehashing is O(1/n).

There will also be a rehash if r2 insertions have been performed with no
failed insertions. Since the expected cost of the rehash is O(n), the amortized
expected cost per insertion of such rehashes is O(1/n).

Summing up, we have shown that the amortized expected time for insertion
is bounded by a constant. The small probability of rehashing, together with
(2), in fact implies that also the variance of the insertion time is constant.

3 Background and Related Work on Linear Space Dictionaries

Hashing, first described in public literature by Dumey [13], emerged in the
1950s as a space efficient heuristic for fast retrieval of information in sparse
tables. Knuth surveys the most important classical hashing methods in [20,
Section 6.4]. The most prominent, and the basis for our experiments in Sec-
tion 4, are Chained Hashing (with separate chaining), Linear Prob-

ing and Double Hashing. Judging from leading textbooks on algorithms,
Knuth’s selection of algorithms is in agreement with current practice for im-
plementation of general purpose dictionaries. In particular, the excellent cache
usage of Linear Probing makes it a prime choice on modern architectures. A
more recent scheme called Two-Way Chaining [2] will also be investigated.
All schemes are briefly described in Section 4.
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3.1 Analysis of early hashing schemes

Early theoretical analysis of hashing schemes was done under the assumption
that hash function values are uniformly random and independent. Precise anal-
yses of the average and expected worst case behaviors of the abovementioned
schemes have been made, see for example [16,20]. We mention just a few facts,
disregarding asymptotically vanishing terms. Note that some figures depend
on implementation details – the below hold for the implementations described
in Section 4.

We first consider the expected number of memory probes needed by the two
“open addressing” schemes to insert a key in a hash table where an α fraction
of the table, 0 < α < 1, is occupied by keys. For Linear Probing the
expected number of probes during insertion is 1

2
(1 + 1

(1−α)2
). This coincides

with the expected number of probes for unsuccessful lookups, and with the
number of probes needed for looking up the key if there are no subsequent
deletions. A deletion rearranges keys to the configuration that would occur if
the deleted key had never been inserted. In Double Hashing the expected
cost of an insertion is 1

1−α
. As keys are never moved, this coincides with the

number of probes needed for looking up the key and for deleting the key. If a
key has not been inserted in the hash table since the last rehash, the expected
cost of looking it up (unsuccessfully) is 1

1−β
, where β is the fraction of keys and

“deleted” markers in the hash table. If the key still has a “deleted” marker in
the table, the expected cost of the unsuccessful lookup is one probe more.

For Chained Hashing with hash table size n/α, the expected length of the
list traversed during an unsuccessful lookup is α. This means that the expected
number of probes needed to insert a new key is 1 + α, which will also be the
number of probes needed to subsequently look up the key (note that probes to
pointers are not counted). A deletion results in the data structure that would
occur if the key had never been inserted.

In terms of expected number of probes, the above implies that, for any given α,
Chained Hashing is better than Double Hashing, which is again better
than Linear Probing. It should be noted, however, that the space used by
Chained Hashing is larger than that in the open addressing schemes for the
same α. The difference depends on the relative sizes of keys and pointers.

Suppose α < 1 is a constant. The longest probe sequence in Linear Probing

is then of expected length Ω(log n). For Double Hashing the longest success-
ful probe sequence is expected to be of length Ω(log n), and there is a nonzero
probability that the length of the longest unsuccessful search is linear. The
expected maximum chain length in Chained Hashing is Θ(log n/ log log n).

Though the above results seem to agree with practice, the randomness as-
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sumptions used for the analyses are questionable in applications. Carter and
Wegman [7] succeeded in removing such assumptions from the analysis of
Chained Hashing, introducing the concept of universal hash function fam-
ilies. When implemented with a random function from Carter and Wegman’s
universal family, chained hashing has constant expected time per dictionary
operation (plus an amortized expected constant cost for resizing the table).
Using the hash function family of Siegel [35], also used in this paper, Lin-

ear Probing and Double Hashing provably satisfy the above performance
bounds [33,34].

3.2 Key rearrangement schemes

A number of (open addressing) hashing schemes have been proposed that share
a key feature with Cuckoo Hashing, namely that keys are moved around
during insertions [4,17,21,22,31]. The main focus in these schemes is to reduce
the average number of probes needed for finding a key in a (nearly) full table
to a constant, rather than the O(log n) average exhibited by standard open
addressing. This is done by occasionally moving keys forward in their probe
sequences.

Our new algorithm rearranges keys in order to reduce the worst case number
of probes to a constant. A necessary condition for this is reuse of hash function
values, i.e., that keys are moved back in their probe sequence. Backward moves
were not used in any previous rearrangement scheme, presumably due to the
difficulty that moving keys back does not give a fresh, “random” placement.
We can make lookups use constant time in the worst case because we do not
deal with full hash tables, but rather hash tables having a constant fraction
of unoccupied cells.

Arrangements of keys with optimal worst case retrieval cost were in fact al-
ready considered by Rivest in [31]. He assumes that the probe sequences are
given, and presents a polynomial time algorithm for finding an arrangement
that minimizes the length of the longest successful search. It is also shown
that if one updates the key set, the expected number of keys that need to be
moved to achieve a new optimal arrangement is constant. (The analysis re-
quires that the hash table is sufficiently sparse, and assumes the hash function
to be truly random.) This suggests a dictionary that solves a small assignment
problem after each insertion and deletion. It follows from [26] and this paper,
that Rivest’s dictionary achieved worst case constant lookup time and ex-
pected amortized constant update time, 8 years before an algorithm with the
same performance and randomness assumption was published by Aho and
Lee [1]. Furthermore, Siegel’s hash functions suffice for the analysis. However,
the Cuckoo Hashing insertion algorithm is much simpler and more efficient
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than that suggested by Rivest.

Another key rearrangement scheme with similarities to Cuckoo Hashing is
Last-come-first-served Hashing [29], which has low variance on search
time as its key feature. It uses the same greedy strategy for moving keys as is
used in this paper, but there is no reuse of hash function values.

3.3 Hashing schemes with worst case lookup guarantee

Two-Way Chaining [2] is an alternative to Chained Hashing that offers
O(log log n) maximal lookup time with high probability (assuming truly ran-
dom hash functions). This scheme shares the feature with Cuckoo Hashing

that keys are stored in one of two places (in this case linked lists). The im-
plementation that we consider represents the lists by fixed size arrays of size
O(log log n) (if a longer chain is needed, a rehash is performed). To achieve
linear space usage, one must then use a hash table of size O(n/ log log n), im-
plying that the average chain length is Ω(log log n) [3]. (We remark that the
idea of storing keys in one out of two places was used even earlier by Karp,
Luby, and Meyer af der Heide [18] in the context of PRAM simulation.)

Another scheme with this worst case guarantee is Multilevel Adaptive Hash-

ing [5]. However, lookups can be performed in O(1) worst case time if O(log log n)
hash function evaluations, memory probes and comparisons are possible in
parallel. This is similar to Cuckoo Hashing, though the latter uses only
two hash function evaluations, memory probes, and comparisons.

A dictionary with worst case constant lookup time was first obtained by Fred-
man, Komlós and Szemerédi [15], though it was static, i.e., did not support
updates. It was later augmented with insertions and deletions in amortized
expected constant time by Dietzfelbinger et al. [10]. Dietzfelbinger and Meyer
auf der Heide [11] improved the update performance by exhibiting a dictionary
in which operations are done in constant time with high probability, namely at
least 1−n−c, where c is any constant of our choice. A simpler dictionary with
the same properties was later developed [8]. When n = |U |1−o(1) a space usage
of O(n) words is not within a constant factor of the information theoretical

minimum of B = log
(

|U |
n

)

bits. The dictionary of Raman and Rao [30] offers

the same performance as [10], using B + o(B) bits in all cases. However, it
does not support information associated with keys.

Very recently, Fotakis et al. [14] analyzed a generalization of Cuckoo Hash-

ing with d possible locations for each key, showing that in this case a space
utilization of 1 − 2−Ω(d) can be achieved, with constant expected time for
insertions.
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4 Experiments

To examine the practicality of Cuckoo Hashing we experimentally compare
it to three well known hashing methods, as described in [20, Section 6.4]:
Chained Hashing (with separate chaining), Linear Probing and Double

Hashing. We also consider Two-Way Chaining [2].

The first three methods all attempt to store a key x at position h(x) in a
hash table. They differ in the way collisions are resolved, i.e., in what happens
when two or more keys hash to the same location.

Chained Hashing. A linked list is used to store all keys hashing to a given
location.

Linear Probing. A key is stored in the next empty table entry. Lookup of
key x is done by scanning the table beginning at h(x) and ending when
either x or an empty table entry is found. When deleting, some keys may
have to be moved back in order to fill the hole in the lookup sequence,
see [20, Algorithm R] for details.

Double Hashing. Insertion and lookup are similar to Linear Probing,
but instead of searching for the next position one step at a time, a second
hash function value is used to determine the step size. Deletions are handled
by putting a special “deleted” marker in the cell of the deleted key. Lookups
skip over deleted cells, while insertions overwrite them.

The fourth method, Two-Way Chaining, can be described as two instances
of Chained Hashing. A key is inserted in one of the two hash tables, namely
the one where it hashes to the shorter chain. A cache-friendly implementation,
as recently suggested in [6], is to simply make each linked list a short, fixed
size array. If a longer list is needed, a rehash must be performed.

4.1 Previous Experimental Results

Although the dictionaries with worst case constant lookup time surveyed in
Section 3 leave little to improve from a theoretical point of view, large constant
factors and complicated implementation hinder their direct practical use. For
example, in the “dynamic perfect hashing” scheme of [10] the upper bound on
space is 35n words. The authors of [10] refer to a more practical variant due
to Wenzel that uses space comparable to that of binary search trees.

According to [19] the implementation of this variant in the LEDA library [25],
described in [39], has average insertion time larger than that of AVL trees for
n ≤ 217, and more than four times slower than insertions in chained hashing.
(On a Linux PC with an Intel Pentium 120 MHz processor.) The experi-
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mental results listed in [25, Table 5.2] show a gap of more than a factor of
6 between the update performance of chained hashing and dynamic perfect
hashing, and a factor of more than 2 for lookups. (On a 300 MHz SUN ULTRA
SPARC.)

Silverstein [36] reports that the space upper bound of the dynamic perfect
hashing scheme of [10] is quite pessimistic compared to what can be observed
when run on a subset of the DIMACS dictionary tests [24]. He goes on to
explore ways of improving space as well as time, improving both the observed
time and space by a factor of roughly three. Still, the improved scheme needs
2 to 3 times more space than an implementation of linear probing to achieve
similar time per operation. Silverstein also considers versions of the data struc-
tures with packed representations of the hash tables. In this setting the dy-
namic perfect hashing scheme was more than 50% slower than linear probing,
using roughly the same amount of space.

Is seems that recent experimental work on “classical” dictionaries (that do not
have worst case constant lookup time) is quite limited. In [19] it is reported
that chained hashing is superior to an implementation of dynamic perfect
hashing in terms of both memory usage and speed.

4.2 Data Structure Design and Implementation

We consider positive 32 bit signed integer keys and use 0 as ⊥. The data struc-
tures are robust in that they correctly handle attempts to insert an element
already in the set, and attempts to delete an element not in the set. During
rehashes this is known not to occur and slightly faster versions of the insertion
procedure are used.

Our focus is on minimizing the time for dictionary operations under the con-
straint that space usage should be reasonable. By the load factor of a dic-
tionary we will understand the size of the set relative to the memory used.
(For Chained Hashing, the notion of load factor traditionally disregards
the space used for linked lists, but we desire equal load factors to imply equal
memory usage.) As seen in [20, Figure 44] the speed of Linear Probing

and Double Hashing degrades rapidly for load factors above 1/2. On the
other hand, none of the schemes improve much for load factors below 1/4. As
Cuckoo Hashing only works when the size of each table is larger than the
size of the set, we can only perform a comparison for load factors less than
1/2. To allow for doubling and halving of the table size, we allow the load
factor to vary between 1/5 and 1/2, focusing especially on the “typical” load
factor of 1/3. For Cuckoo Hashing and Two-Way Chaining there is a
chance that an insertion may fail, causing a “forced rehash”. If the load factor
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is larger than a certain threshold, somewhat arbitrarily set to 5/12, we use
the opportunity to double the table size. By our experiments this only slightly
decreases the average load factor.

Apart from Chained Hashing, the schemes considered have in common the
fact that they have only been analyzed under randomness assumptions that
are currently impractical to realize. However, experience shows that rather
simple and efficient hash function families yield performance close to that
predicted under stronger randomness assumptions. We use a function family
from [9] with range {0, 1}q for positive integer q. For every odd a, 0 < a < 2w,
the family contains the function ha(x) = (ax mod 2w) div 2w−q. Note that
evaluation can be done very efficiently by a 32 bit multiplication and a shift.
However, this choice of hash function restricts us to consider hash tables whose
sizes are powers of two. A random function from the family (chosen using C’s
rand function) appears to work fine with all schemes except Cuckoo Hash-

ing. For Cuckoo Hashing we experimented with various hash functions
and found that Cuckoo Hashing was rather sensitive to the choice of hash
function. It turned out that the exclusive or of three independently chosen
functions from the family of [9] was fast and worked well. We have no good
explanation for this phenomenon. For all schemes, various alternative hash
families were tried, with a decrease in performance.

All methods have been implemented in C. We have striven to obtain the
fastest possible implementation of each scheme. Specific choices made and
details differing from the references are:

Chained Hashing. C’s malloc and free functions were found to be a per-
formance bottleneck, so a simple “freelist” memory allocation scheme is
used. Half of the allocated memory is used for the hash table, and half for
list elements. If the data structure runs out of free list elements, its size is
doubled. We store the first key of each linked list directly in the hash table,
as this often saves one cache miss. Having the first key in the hash table also
slightly improves memory utilization, in the expected sense. This is because
every non-empty linked list is one element shorter and because we expect
more than half of the hash table cells to contain a linked list for the load
factors considered here.

Double Hashing. To prevent the tables from clogging up with deleted cells,
resulting in poor performance for unsuccessful lookups, all keys are rehashed
when 2/3 of the hash table is occupied by keys and “deleted” markers. The
fraction 2/3 was found to give a good tradeoff between the time for insertion
and unsuccessful lookups.

Linear Probing. Our first implementation, like that in [36], employed dele-
tion markers. However, we found that using the deletion method described
in [20, Algorithm R] was considerably faster, as far fewer rehashes were
needed.
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Two-Way Chaining. We allow four keys in each bucket. This is enough to
keep the probability of a forced rehash low for hundreds of thousands of
keys, by the results in [6]. For larger collections of keys one should allow
more keys in each bucket, resulting in general performance degradation.

Cuckoo Hashing. The architecture on which we experimented could not
parallelize the two memory accesses in lookups. Therefore we only evaluate
the second hash function after the first memory lookup has shown unsuc-
cessful.

For all schemes, rehashing was implemented as repeated insertion of all keys
into a newly allocated hash table. For efficiency we used special insertion
procedures without a check of whether keys were already inserted.

Some experiments were done with variants of Cuckoo Hashing. In partic-
ular, we considered Asymmetric Cuckoo, in which the first table is twice
the size of the second one. This results in more keys residing in the first table,
thus giving a slightly better average performance for successful lookups. For
example, after a long sequence of alternate insertions and deletions at load
factor 1/3, we found that about 76% of the elements resided in the first ta-
ble of Asymmetric Cuckoo, as opposed to 63% for Cuckoo Hashing.
There was no significant slowdown for other operations. We will describe the
results for Asymmetric Cuckoo when they differ significantly from those
of Cuckoo Hashing.

4.3 Setup

Our experiments were performed on a PC running Linux (kernel version
2.2) with an 800 MHz Intel Pentium III processor, and 256 MB of mem-
ory (PC100 RAM). The processor has a 16 KB level 1 data cache and a
256 KB level 2 “advanced transfer” cache. Our results nicely fit a simple
model parameterized by the cost of a cache miss and the expected num-
ber of probes to “random” locations (see the technical report [28] for de-
tails). They are thus believed to have significance for other hardware con-
figurations. An advantage of using the Pentium processor for timing ex-
periments is its rdtsc instruction which can be used to measure time in
clock cycles. This gives access to very precise data on the behavior of al-
gorithms, and allows us to discard the time used by the program issuing
the calls to the Cuckoo Hashing data structure. In our case it also sup-
plies a way of discarding measurements significantly disturbed by interrupts
from hardware devices or the process scheduler, as these show up as a small
group of timings significantly separated from all other timings. Programs
were compiled using the gcc compiler version 2.95.2, using optimization flags
-O9 -DCPU=586 -march=i586 -fomit-frame-pointer -finline-functions
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-fforce-mem -funroll-loops -fno-rtti. As mentioned earlier, we use a
global clock cycle counter to time operations. If the number of clock cycles
spent on a dictionary operation exceeds 5000, and there was no rehash, we
conclude that the call was interrupted, and disregard the result (it was em-
pirically observed that no operation ever took between 2000 and 5000 clock
cycles). If a rehash is made, we have no way of filtering away time spent in
interrupts. However, all tests were made on a machine with no irrelevant user
processes, so disturbances should be minimal. On our machine it took 32 clock
cycles to call the rdtsc instruction. These clock cycles have been subtracted
from the results.

4.4 Results

Our main experiment was designed to model the situation in which the size of
the dictionary is not changing too much. It considers a sequence of mixed oper-
ations generated at random. We constructed the test operation sequences from
a collection of high quality random bits publicly available on the Internet [23].
The sequences start by insertion of n distinct random keys, followed by 3n
times four operations: A random unsuccessful lookup, a random successful
lookup, a random deletion, and a random insertion. We timed the operations
in the “equilibrium”, where the number of elements is stable. For load factor
1/3 our results appear in Figures 3 and 4, which show an average over 10 runs.
We ran experiments with up to 224/3 keys. As Linear Probing was consis-
tently faster than Double Hashing, we chose it as the sole open addressing
scheme in the plots. Time for forced rehashes was added to the insertion time.
The results had a large variance, over the 10 runs, for sets of size 212 to 216.
Outside this range the extreme values deviated from the average by less than
about 7%. The large variance sets in when the data structure starts to fill the
level 2 cache. We believe this is caused by our test program reading data from
disk and thus sometimes evicting parts of the data structure from cache.

As can be seen, the time for lookups is almost identical for all schemes as long
as the entire data structure fits in level 2 cache, i.e., for n < 216/3. After this
the average number of accesses to a random memory cell (with the probability
of a cache miss approaching 1) shows up. The shape of the curves reflect the
increasing probability of a cache miss for an access to a random memory cell
(see Section 5 of the technical report [28] for details). This makes linear probing
an average case winner, with Cuckoo Hashing and Two-Way Chaining

following about 40 clock cycles behind. For insertion the number of accesses
to a random memory cell again dominates the picture for large sets, while the
higher number of in-cache accesses and more computation makes Cuckoo

Hashing, and in particular Two-Way chaining, slower for small sets. The
cost of forced rehashes sets in for Two-Way Chaining for sets of more than
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Fig. 3. The average time per lookup operation in equilibrium for load factor 1/3.

a million elements, at which point better results may have been obtained by a
larger bucket size. For deletion Chained Hashing lags behind for large sets
due to accesses to a random memory cell when freeing list elements, while the
simplicity of Cuckoo Hashing makes it the fastest scheme. We note that,
for dictionaries that fit in cache, the total time for an insertion and a deletion
is smallest for Cuckoo Hashing among the four schemes.

At this point we should mention that the good cache utilization of Linear

Probing and Two-Way Chaining depends on the cache lines being con-
siderably larger than keys (and any associated information placed together
with keys). If this is not the case, it causes the number of cache misses to rise
significantly. The other schemes discussed here do not deteriorate in this way.

We made additional experiments concerning the cost of insertions in growing
dictionaries and deletions in shrinking dictionaries, which takes into account
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Fig. 4. The average time per update operation in equilibrium for load factor 1/3.

the cost of rehashes needed to keep space utilization around 1/3. The interested
reader can find the results of these tests in the technical report [28].

DIMACS Tests

Access to data in a dictionary is rarely random in practice. In particular, the
cache is more helpful than in the above random tests, for example due to
repeated lookups of the same key, and deletion of short-lived keys. As a rule
of thumb, the time for such operations will be similar to the time when all of
the data structure is in cache. To perform actual tests of the dictionaries on
more realistic data, we chose a representative subset of the dictionary tests
of the 5th DIMACS implementation challenge [24]. The tests involving string
keys were preprocessed by hashing strings to 32 bit integers, as described in
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Joyce Eddington

Linear 42 - 45 (.35) 26 - 27 (.40)

Double 48 - 53 (.35) 32 - 35 (.40)

Chained 49 - 52 (.31) 36 - 38 (.28)

A.Cuckoo 47 - 50 (.33) 37 - 39 (.32)

Cuckoo 57 - 63 (.35) 41 - 45 (.40)

Two-Way 82 - 84 (.34) 51 - 53 (.40)

Fig. 5. Average clock cycles per operation and load factors for two DIMACS string
tests.

3.11-Q-1 Smalltalk-2 3.2-Y-1

Linear 99 - 103 (.30) 68 - 72 (.29) 85 - 88 (.32)

Double 116 - 142 (.30) 77 - 79 (.29) 98 - 102 (.32)

Chained 113 - 121 (.30) 78 - 82 (.29) 90 - 93 (.31)

A.Cuckoo 166 - 168 (.29) 87 - 95 (.29) 95 - 96 (.32)

Cuckoo 139 - 143 (.30) 90 - 96 (.29) 104 - 108 (.32)

Two-Way 159 - 199 (.30) 111 - 113 (.29) 133 - 138 (.32)

Fig. 6. Average clock cycles per operation and load factors for three DIMACS integer
tests.

Appendix A. This preserves, with high probability, the access pattern to keys.
For each test we recorded the average time per operation, not including the
time used for preprocessing. The minimum and maximum of six runs can be
found in Tables 5 and 6, which also lists the average load factor. Linear probing
is again the fastest, but mostly just 20-30% faster than the Cuckoo schemes.

The Number of Cache Misses During Insertion

We have seen that the number of accesses to a random memory cell (i.e.,
cache misses) is critical to the performance of hashing schemes. Whereas there
is a very precise understanding of the probe behavior of the classic schemes
(under suitable randomness assumptions), the analysis of the expected time
for insertions in Section 2.3 is rather crude, establishing just a constant upper
bound. One reason that our calculation does not give a very tight bound is
that we use a pessimistic estimate on the number of key moves needed to
accommodate a new element in the dictionary. Often a free cell will be found
even though it could have been occupied by another key in the dictionary. We
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also pessimistically assume that a large fraction of key moves will be spent
backtracking from an unsuccessful attempt to place the new key in the first
table.

Figure 7 shows experimentally determined values for the average number of
probes during insertion for various schemes and load factors below 1/2. We
disregard reads and writes to locations known to be in cache, and the cost of
rehashes. Measurements were made in “equilibrium” after 105 insertions and
deletions, using tables of size 215 and truly random hash function values. We
believe that this curve is independent of the table size (up to vanishing terms).
The curve for Linear Probing does not appear, as the number of non-cached
memory accesses depends on cache architecture (length of the cache line), but
it is typically very close to 1. The curve for Cuckoo Hashing seems to be
2 + 1/(4 + 8α) ≈ 2 + 1/(4ε). This is in good correspondence with (3) of the
analysis in Section 2.3. It should be remarked that the highest possible load
factor for Two-Way Chaining is O(1/ log log n).

As noted in Section 2, the insertion algorithm of Cuckoo Hashing is biased
towards inserting keys in T1. If we instead of starting the insertion in T1 choose
the start table at random, the number of cache misses decreases slightly for
insertion. This is because the number of free cells in T1 increases as the load
balance becomes even. However, this also means a slight increase in lookup
time. Also note that since insertion checks if the element is already inserted,
Cuckoo Hashing uses at least two cache misses. The initial lookup can be
exploited to get a small improvement in insertion performance, by inserting
right away when either cell T1[h1(x)] or T2[h2(x)] is vacant. For load factor
1/3 this places about 10% of newly inserted keys in T2. The relatively low
percentage is the reason why we found no advantage in performing the extra
check in our implementation.

Since lookup is very similar to insertion in Chained Hashing, one could
think that the number of cache misses would be equal for the two operations.
However, in our implementation, obtaining a free cell from the freelist may
result in an extra cache miss. This is the reason why the curve for Chained

Hashing in the figure differs from a similar plot in Knuth [20, Figure 44].

5 Conclusion

We have presented a new dictionary with worst case constant lookup time. It
is very simple to implement, and has average case performance comparable
to the best previous dictionaries. Earlier schemes with worst case constant
lookup time were more complicated to implement and had worse average case
performance. Several challenges remain. First of all an explicit, truly practi-
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cal hash function family that is provably good for the scheme has yet to be
found. One step in this direction was recently taken by Dietzfelbinger and
Woelfel [12], but their hash functions still require a relatively large amount of
space. Secondly, we lack a precise understanding of why the scheme exhibits
low constant factors. In particular, the curve of Figure 7 needs to be explained.
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A Constructions and properties of universal hash functions

A.1 Universal hash function families

As a simple example of a universal family, the family of all functions from U to
some codomain is (1, |U |)-universal. However, for implementation purposes one
needs families with much more succinct memory representations. A standard
construction of a (2, k)-universal family for range R = {0, . . . , r−1} and prime
p > max(2w, r) is

{x 7→ ((
k−1
∑

l=0

alx
l) mod p) mod r | 0 ≤ a0, a1, . . . , ak−1 < p} . (A.1)
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This paper uses a hash function construction due to Siegel [35] that has con-

stant evaluation time (however, the constant is not small). Its properties are
captured by the following theorem, which can be derived from Siegel’s paper
by using a universe collapse function, as described below.

Theorem 1 (Siegel) Let γ and δ > 0 be constants, and take any set X ⊆ U .

Using space and initialization time O(|X|δ) it is possible to construct a family

of functions such that, for some constant δ′ > 0:

• With probability at least 1 − |X|−γ the family is (1, |X|δ
′

)-universal when

restricted to X.

• Furthermore, functions from the family can be evaluated in constant time,

and a random function can be picked using time and space O(|X|δ).

A.2 Collapsing the universe

The restriction that keys are single words is not a serious one, as longer keys
can be handled using the standard technique of collapsing the universe. Specif-
ically, long keys can be mapped to keys of O(1) words by applying a random
function ρ from a (O(1), 2)-universal family. There is such a family whose func-
tions can be evaluated in time linear in the number of words in a key [7]. It
works by evaluating a function from a (O(1), 2)-universal family on each word
of the key, computing the bitwise exclusive or of the function values. (See [37]
for an efficient implementation.) Such a function ρ with range {0, 1}2 log(n)+c

will, with probability 1 − O(2−c), be injective on S. In fact, with constant
probability ρ is injective on a given sequence of Ω(2c/2n) consecutive sets in
a dictionary of initial size n (see [10]). When a collision for ρ between two
elements of S is detected in the dictionary, everything is rehashed, i.e., ρ is
chosen anew and the whole data structure is rebuilt. If a rehash can be done
in expected O(n) time, the amortized expected cost of this is O(2−c/2) per
insertion. In this way we can effectively reduce the universe size to O(n2),
though the full keys still need to be stored to decide membership.
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