SUBTYPING

Intuitively, A is a subtype of B if any object of type A can be used in place of an object of type B.

Another way to look at it, informally, is:

"If A is a subtype of B, then every expression with type A also has type B."

-This is the subsumption property -to be formalized later.
There are two ways to view subtyping w.r.t. practical considerations:

Conversion vs. containment

Conversion: If A is a subtype of B, then their values may have different implementations, but there is a conversion (automatic) from A's to B's.

c.g. int to real in Fortran mixed-mode arithmetic
 (involves actual conversion operations)

Containment: A denotes a subset of the set of values denoted by B.

c.g. In Ada
 subtype my-int is integer range 1..10
Remember that **subtyping** is orthogonal to **inheritance**

- Subtyping is a relationship between types
- Inheritance is a relationship between implementations.
 - Simply a convenience to avoid cutting & pasting in the editor.

Unfortunately, many languages confuse them.
Formal treatment of subtyping

Start with the simply-typed lambda calculus with subtyping

\[\lambda \rightarrow \]

\[\lambda < \]

A signature \(\Sigma \) is a triple

\[\Sigma = (B, \text{Sub}, C) \]

where \(B \) is a set of type constants, \(C \) a set of term constants, and \(\text{Sub} \) is a set of subtyping assertions of the form

\[b <: b' \]

between type constants \(b, b' \in B \).

(subtyping assertions are between atomic type names)
Note that Sub will never contain assertions of the form

\[b \ll : b_1 \rightarrow b_2 \]

for type constants \(b, b_1, \) and \(b_2 \).

Type Expressions in \(\lambda_{\ll} \):

- same as in \(\lambda \rightarrow \)

\[\tau ::= b \mid \tau \rightarrow \tau \]
The subtype relation $\tau : \tau$ is defined by axioms and inference rules:

$$\tau : \tau \quad \text{(ref \,} \tau : \tau \text{)}$$

$$\rho : \sigma, \sigma : \tau \quad \text{(trans \,} \tau : \tau \text{)}$$

This makes $\tau : \sigma$ a preorder — a reflexive, transitive relation.

$$\rho : \tau, \tau : \rho' \quad \text{(trans \,} \tau : \tau \text{)}$$

$$\tau : \tau', \tau : \rho \rightarrow \rho'$$

is antimonotonic in its second argument! "contravariance"
In the "containment" (subset) interpretation, it does not seem intuitive, given \(\text{int} \subset \text{real} \), that the set of functions denoted by \(\text{real} \rightarrow \text{int} \) is a subset of the set of functions in \(\text{int} \rightarrow \text{int} \).

- becomes more intuitive when you read \(\text{int} \rightarrow \text{int} \) as the set of functions whose domain is at least the set of integers, and whose range is the integers.

To formalize this (since it isn't a proper set in set theory), we consider a single domain VALUE and a function apply: \(\text{VALUE} \times \text{VALUE} \rightarrow \text{VALUE} \). Then

\[
\text{A} \rightarrow \text{B} = \{ f \in \text{Value} \mid \forall x \in \text{Value}, \text{if } x \in \text{A} \text{ then apply } f(x) \in \text{B} \}
\]
Back to $\lambda \prec$:

Terms in $\lambda \prec$:
- identical to $\lambda \rightarrow$ terms, plus

$$\Gamma \vdash M : \sigma \Rightarrow \Gamma \vdash \sigma < : \tau$$

$$\Gamma \vdash M : \tau.$$ (subsumption)

- also have (var), (\rightarrow intro), (\rightarrow elim), and (add var).
Example: A type derivation for
\[\Phi \vdash (\lambda x: \text{real}. \text{div} \; x \; 2.0) \; 2 : \text{real} \]

where \(2.0 : \text{real}, \; 2 : \text{int}, \; \text{div} : \text{real} \rightarrow \text{real} \rightarrow \text{real} \)
and \(\text{int} \prec \text{real} \).

Two ways:

1) \[
\phi \vdash (\lambda x: \text{real}. \text{div} \; x \; 2.0) : \text{real} \rightarrow \text{real} \\
| \text{(subsumption)} \\
\phi \vdash (\lambda x: \text{real}. \text{div} \; x \; 2.0) : \text{int} \rightarrow \text{real} \\
| \rightarrow \text{elim} \\
\phi \vdash (\lambda x: \text{real}. \text{div} \; x \; 2.0) 2 : \text{real} \\
\]

2) \[
\phi \vdash (\lambda x: \text{real}. \text{div} \; x \; 2.0) : \text{real} \rightarrow \text{real} \\
| \text{(subsumption)} \\
\phi \vdash (\lambda x: \text{real}. \text{div} \; x \; 2.0) : \text{int} \\
| \rightarrow \text{elim} \\
\phi \vdash (\lambda x: \text{real}. \text{div} \; x \; 2.0) 2 : \text{real} \\
\]

2 : \text{int}
Record Subtyping

The subtyping relation is defined by the signature \(\Sigma \), as in \(\lambda \Sigma \), along with the axioms and rules from \(\lambda \Sigma \), plus

\[
\tau_1 \triangleleft \rho_1, \ldots, \tau_n \triangleleft \rho_n
\]

\[
\langle l_1 : \tau_1, \ldots, l_n : \tau_n, l_{n+1} : \sigma_1, \ldots, l_{n+m} : \sigma_m \rangle \triangleleft \langle l_1 : \rho_1, \ldots, l_n : \rho_n \rangle
\]

-a subtype is obtained by adding components or restricting the type \(\rho_i \) of a component to a subtype \(\tau_i \triangleleft \rho_i \).
The containment interpretation of record subtyping can be seen if we view records as partial functions from labels to values.

- think of a record as a finite set of ordered label-value pairs.

The type `<a:int, b:bool>` denotes the set of all functions mapping label `a` to an integer and label `b` to a boolean (among other mappings).

Since the record `<a=3, b=true, c=2.7>` does map `a` to an int and `b` to a bool, it is also an element of `<a:int, b:bool>`
Typing Rules for $\lambda_{\downarrow}^{\text{record}}$ terms:

- same as λ_{\downarrow} with

$$
\Gamma \vdash M_1 : \tau_1, \ldots, \Gamma \vdash M_n : \tau_n
$$

$$
\Gamma \vdash \langle l_1 = M_1, \ldots, l_n = M_n \rangle : \langle l_1 : \tau_1, \ldots, l_n : \tau_n \rangle
$$

(record intro)

$$
\Gamma \vdash M : \langle l_1 : \tau_1, \ldots, l_n : \tau_n \rangle
$$

$$
\Gamma \vdash M \cdot l_i : \tau_i
$$

(record elim)
A Record Model of Objects

Since, in OOPL's, an object type may have methods over that type, the object type must be defined recursively.

- Using recursive types

eg. Type \(\text{point} = \langle x: \text{int}, y: \text{int},
 \text{move}: \text{int} \rightarrow \text{int} \rightarrow \text{point} \rangle \)

We can write this type in \(\lambda \)-calculus if we extend type expressions to include type variables and the recursive form \(\mu\). Forming the language \(\lambda^{\mu} \):

\[
\tau ::= \tau \rightarrow \tau | \langle e_1 : \tau_1, \ldots, e_k : \tau_k \rangle | \mu \tau
\]

Thus,

\(\text{point} \overset{\text{def}}{=} \mu \tau. \langle x: \text{int}, y: \text{int}, \text{move}: \text{int} \rightarrow \text{int} \rightarrow \text{int} \rightarrow \text{int} \rightarrow \text{point} \rangle \)
Since μ is a binding operator, it doesn't matter what name we choose for the bound type variable:

\[\mu t. \text{true} = \text{true} \]

Also, remember the equational axiom (from a long-ago lecture):

(undef) \[\mu t. \text{true} = [\mu t. \text{true}/x] \text{true} \]

Finally, we can use a fixpoint operator on terms to define object constructors:

\[\text{make_point} \overset{df}{=} \text{fix } (\lambda f: \text{int} \rightarrow \text{int} \rightarrow \text{point}. \lambda x: \text{int}. \lambda y: \text{int}. \langle x = x_v, y = y_v, \text{move} = (\lambda dx: \text{int}. \lambda dy: \text{int}. +(x_v + dx, y_v + dy)) \rangle) \]
Does this mean that fix has to be added to $\lambda Z:\text{record.}m$?

- No, it can be constructed using recursive types!
- from early lecture.

Subtyping for recursive types

Since objects are modeled by records, object subtyping is determined by record subtyping
- extended w/ subtyping on $\texttt{mt.}$

First, some intuitive examples:

```plaintext
type point = \langle x: \text{int}, y: \text{int}, move: \text{int} \to \text{int} \to \text{point}\rangle
```

- shorthand for $\texttt{mt.}$

```plaintext
type color_point = \langle x: \text{int}, y: \text{int}, c: \text{color},
move: \text{int} \to \text{int} \to \text{color_point}\rangle
```

Should `color_point < : point`? - Yes
What about

type eq-point = \langle x : \text{int}, y : \text{int}, \text{eq : eq-point} \rightarrow \text{bool} \rangle

type eq-col-point = \langle x : \text{int}, y : \text{int}, \text{eq : eq-col-point} \rightarrow \text{bool} \rangle

Is eq-col-point \leq eq-point?

Seems reasonable, but for this to be, it must be that

eq-col-point \rightarrow \text{bool} \leq eq-point \rightarrow \text{bool}

which is only true if

eq-point \leq eq-col-point

Since eq-point \neq eq-col-point, this clearly can't be the case.

Fix: Make eq-col-point.eq : eq-pt \rightarrow \text{bool}.

- unsatisfactory
 (see Adag95, others)