The PageRank Algorithm

The PageRank algorithm can be specified, in high-level pseudo-code, as follows below. This implementation assume that, if you reach a page with no outlinks, you jump randomly in the Web. This is not a very efficient implementation, but it will do for this assignment.

function PageRank(in G : directed graph of N web pages;
E : real. Probability of flipping heads.)
return PR[1 ... N]. /* PR[I] is the page rank of page I */
var PP[1..N] /* Spare array of size N */
randomTrans : real; /* Probability of reaching a particular node
by a random jump either from a vertex with no outlinks,
or by flipping tails. */
vOuts : Set of pages with at least one outlink;
vNoOuts : Set of pages with no outlinks;
{
for (I=1 to N) PR[I]=1/N;
repeat {
randomTrans = \sum_{I \in vOuts} (1 - E)PR[I]/N + \sum_{I \in vNoOuts} PR[I]/N;
for (J=1 to N) PP[J] = randomTrans + \sum_{I \rightarrow J} E \cdot PR[I]/(# of outlinks from I)
if (for every I, |PP[I]−PR[I]| < \epsilon)
then exitloop;
PR := PP; }
return(PR); }

The HITS Algorithm

One formulation of the HITS algorithm is as follows:

function HITS(in G : directed graph of N web pages;
E : real. Probability of flipping heads.)
return AU[1 ... N], /* AU[I] is the authority value of page I */
HUB[1 ... N]; /* HUB[I] is the hub value of page I */
var A1[1 .. N], H1[1..N]; /* Spare arrays */
{
Hubs = set of pages with at least one outlink;
Auths = set of pages with at least one inlink;
HUB = AU = 0;
for (I in Hubs) HUB[I] := 1/|Hubs|;
return(HUB, AU);
}
for (I in Auths) AU[I] := 1/|Auths|;
repeat {
 for (J in Auths) A1[J] = (1−E)/|Auths| + \sum_{I\rightarrow J} E \cdot \text{HUB}[I] / \#(outlinks from I)
 for (I in Hubs) H1[I] = (1−E)/|Hubs| + \sum_{I\rightarrow J} E \cdot \text{AU}[J] / \#(inlinks to J)
 if ((for every J in Auths, |A1[J] − AU[J]| / AU[J] < \epsilon) and
 (for every I in Hubs, |H1[I] − \text{HUB}[I]| / \text{HUB}[I] < \epsilon))
 then exitloop;
 HUB := H1;
 AU := A1;
}

Part I

Write a program that reads from input a set of URL’s and then computes the PageRank, hub value, and authority value of each of these pages relative to that set. Do not include any self-links (links from a page to itself) in setting up the adjacency graph.

Run your program on the three test inputs linked on the Web page with E=0.15, E=0.5, and E=0.85. In all these experiments, and in the experiments in part 2, set \(\epsilon = 0.05 \)

Part II

The following algorithm generates a random graph with approximately N vertices whose structure somewhat resembles the actual structure of the Web.

randomGraph(N);
{ initialize the graph to contain vertices U, V and a link U→V;
 repeat {
 flip a coin that comes up heads with probability 3/4;
 if (heads)
 then pick a link at random, and let T be the tail of that link;
 else create a new vertex T;
 flip a coin that comes up heads with probability 3/4;
 if (heads)
 then pick a link at random, and let H be the head of that link;
 else create a new vertex H;
 add a link from T→H unless this link already exists;
 } until there are at least N vertices in the graph.
}

Run and report the following experiments:
For N=20, 200, 2000, ... and continuing by factors of 10 as long as you reasonably can:

- Generate a random graph of size N and plot in-degree versus rank of in-degree (see lecture notes 4).

- Generate 100 random graphs of size N, and run the PageRank algorithm with E=0.15, E=0.5, E=0.85. For each value of N and E report the mean number of iterations of the main loop needed for the algorithm to converge and the standard deviation.