Review

- Theories
- Congruence Closure
- Interpretations Between Theories

Outline

- Combining Decision Procedures
- Example Application: Translation Validation

Sources:

Combining Decision Procedures

Often, verification conditions are expressed in a language which mixes several theories.

A natural question is whether one can use decision procedures for individual theories to construct a decision procedure for the union theory.

More precisely, suppose that $\Sigma_1, \ldots, \Sigma_n$ are n signatures, and for $i = 1, \ldots, n$, let T_i be a Σ_i-theory.

Then, let Sat_i be a decision procedure for deciding the T_i-satisfiability of Σ_i-formulas.

How can we use these to construct a decision procedure for the T-satisfiability of Σ-formulas, where $T = Cn \cup \bigcup_i T_i$ and $\Sigma = \bigcup_i \Sigma_i$?
The Nelson-Oppen Method

A very general method for combining decision procedures is the Nelson-Oppen method.

This method is applicable when

1. The signatures Σ_i are disjoint.
2. The theories T_i are stably-infinite.

 A Σ-theory T is stably-infinite if every T-satisfiable quantifier-free Σ-formula is satisfiable in an infinite model.
3. The formulas to be tested for satisfiability are quantifier-free.

In practice, only the third requirement is a significant restriction.

We may also restrict our attention to conjunctions of literals.

This is because any quantifier-free formula can be put into disjunctive normal form. It then suffices to check the satisfiability of each conjunction.

Before explaining the procedure in detail, we need the following definitions.

1. For $i = 1, \ldots, n$, a member of Σ_i is an i-symbol.
2. A Σ-term t is an i-term if it is a variable, a constant i-symbol, or the application of a functional i-symbol.
3. An i-predicate is an application of a predicate i-symbol.
4. An atomic i-formula is an i-predicate or an equation whose left hand side is an i-term (for equations whose left-hand-sides are variables, we arbitrarily choose a theory T_i to associate with each variable).
5. An i-literal is an atomic i-formula or the negation of an atomic i-formula.
6. An occurrence of a term t in either a term or a formula is i-alien if t is a j-term with $i \neq j$ and all of its super-terms (if any) are i-terms.
7. An i-term or i-literal is pure if it contains only i-symbols.

Now we can explain step one of the Nelson-Oppen method:

1. **Conversion to Separate Form**

 Given a conjunction of literals ϕ, we desire to convert it into a separate form: a T-equisatisfiable conjunction of literals $\psi_1 \land \psi_2 \land \ldots \land \psi_n$, where each ψ_i is a Σ_i-formula.

 The following algorithm accomplishes this.

 1. Let ψ be some i-literal in ϕ.
 2. If ψ is a pure i-literal, for some i, remove ψ from ϕ and add ψ to ϕ_i; if ϕ is empty then stop; otherwise goto step 1.
 3. Let t be an i-alien term in ϕ. Replace t in ϕ with a new variable z associated with theory T_i, and add $z = t$ to ϕ_i. Goto step 1.

It is easy to see that ϕ is T-satisfiable iff $\phi_1 \land \ldots \land \phi_n$ is T-satisfiable.

Furthermore, because each ϕ_i is a Σ_i-formula, we can run Sat_i on each ϕ_i.

Clearly, if Sat_i reports that any ϕ_i is unsatisfiable, then ϕ is unsatisfiable.

But the converse is not true in general.

We need a way for the decision procedures to communicate with each other about shared variables.

First a definition: If S is a set of terms and \sim is an equivalence relation on S, then the arrangement of S induced by \sim is

$$\text{Arr}_\sim = \{x = y \mid x \sim y\} \cup \{x \neq y \mid x \not\sim y\}.$$
The Nelson-Oppen Method

Suppose that \(T_1 \) and \(T_2 \) are theories with disjoint signatures \(\Sigma_1 \) and \(\Sigma_2 \) respectively. Let \(T = C \cap T_1 \cup T_2 \) and \(\Sigma = \bigcup \Sigma_i \). Given a \(\Sigma \)-formula \(\phi \) and decision procedures \(\text{Sat}_1 \) and \(\text{Sat}_2 \) for \(T_1 \) and \(T_2 \) respectively, we wish to determine if \(\phi \) is \(T \)-satisfiable. The non-deterministic Nelson-Oppen algorithm for this is as follows:

1. Convert \(\phi \) to its separate form \(\phi_1 \land \phi_2 \).
2. Let \(S \) be the set of variables shared between \(\phi_1 \) and \(\phi_2 \). Guess an equivalence relation \(\sim \) on \(S \).
3. Run \(\text{Sat}_1 \) on \(\phi_1 \cup \mathcal{A} \sim \).
4. Run \(\text{Sat}_2 \) on \(\phi_2 \cup \mathcal{A} \sim \).

If there exists an equivalence relation \(\sim \) such that both \(\text{Sat}_1 \) and \(\text{Sat}_2 \) succeed, then we claim that \(\phi \) is \(T \)-satisfiable.

If no such equivalence relation exists, then we claim that \(\phi \) is \(T \)-unsatisfiable.

The generalization to more than two theories is straightforward.

Correctness of Nelson-Oppen

We define an interpretation of a signature \(\Sigma \) to be a model of \(\Sigma \) together with a variable assignment. If \(\mathcal{A} \) is an interpretation, we write \(\mathcal{A} \models \phi \) to mean that \(\phi \) is satisfied by the model and variable assignment contained in \(\mathcal{A} \).

Two interpretations \(\mathcal{A} \) and \(\mathcal{B} \) are isomorphic if there exists an isomorphism \(h \) of the model of \(\mathcal{A} \) into the model of \(\mathcal{B} \) and \(h(x^\mathcal{A}) = x^\mathcal{B} \) for each variable \(x \) (where \(x^\mathcal{A} \) signifies the value assigned to \(x \) by the variable assignment of \(\mathcal{A} \)).

We furthermore define \(\mathcal{A}^{\Sigma_i, V} \) to be the restriction of \(\mathcal{A} \) to the symbols in \(\Sigma_i \) and the variables in \(V \).

Theorem

Let \(\Sigma_1 \) and \(\Sigma_2 \) be signatures, and for \(i = 1, 2 \), let \(\phi_i \) be a set of \(\Sigma_i \)-formulas, and \(V_i \) the set of variables appearing in \(\phi_i \). Then \(\phi_1 \cup \phi_2 \) is satisfiable if there exists a \(\Sigma_1 \)-interpretation \(\mathcal{A} \) satisfying \(\phi_1 \) and a \(\Sigma_2 \)-interpretation \(\mathcal{B} \) satisfying \(\phi_2 \) such that:

\[\mathcal{A}^{\Sigma_1 \cap \Sigma_2, V_1 \cap V_2} \text{ is isomorphic to } \mathcal{B}^{\Sigma_1 \cap \Sigma_2, V_1 \cap V_2}. \]

Example

Consider the combination of the theory \(T_Z \) with the theory \(T_E \) of equality.
Let \(\phi = 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2) \).
Is this satisfiable? \textbf{No}.

To determine this using the above algorithm, we first convert \(\phi \) to a separate form:
\[\phi_Z = 1 \leq x \land x \leq 2 \land y = 1 \land z = 2 \]
\[\phi_E = f(x) \neq f(y) \land f(x) \neq f(z) \]

Now, the shared variables are \(\{x, y, z\} \). There are 5 possible arrangements based on equivalence classes of \(x, y, \) and \(z \):

1. \(\{x = y, x = z, y = z\} \): inconsistent with \(\phi_E \).
2. \(\{x = y, x \neq z, y \neq z\} \): inconsistent with \(\phi_E \).
3. \(\{x \neq y, x = z, y \neq z\} \): inconsistent with \(\phi_E \).
4. \(\{x \neq y, x \neq z, y = z\} \): inconsistent with \(\phi_Z \).
5. \(\{x \neq y, x \neq z, y \neq z\} \): inconsistent with \(\phi_Z \).

Correctness of Nelson-Oppen

Proof

Let \(\Sigma = \Sigma_1 \cap \Sigma_2 \) and \(V = V_1 \cap V_2 \).
Suppose \(\phi_1 \cup \phi_2 \) is satisfiable. Let \(\mathcal{M} \) be an interpretation satisfying \(\phi_1 \cup \phi_2 \). If we let \(\mathcal{A} = M^{\Sigma_1, V_1} \) and \(\mathcal{B} = M^{\Sigma_2, V_2} \), then clearly

\[\mathcal{A} \models \phi_1 \]
\[\mathcal{B} \models \phi_2 \]
\[\mathcal{A}^{\Sigma_i, V} \text{ is isomorphic to } \mathcal{B}^{\Sigma_i, V} \]

On the other hand, suppose that we have \(\mathcal{A} \) and \(\mathcal{B} \) satisfying the three conditions listed above. Let \(h \) be an isomorphism from \(\mathcal{A}^{\Sigma_i, V} \) to \(\mathcal{B}^{\Sigma_i, V} \).

We define an interpretation \(\mathcal{M} \) as follows:

\[\text{dom}(\mathcal{M}) = \text{dom}(\mathcal{A}) \]

For each variable or constant \(u \), let \(u^\mathcal{M} = \begin{cases} u^\mathcal{A} & \text{if } u \in \Sigma_1^C \cup V_1 \\ h^{-1}(u^\mathcal{B}) & \text{otherwise} \end{cases} \]
Correctness of Nelson-Oppen

- For function symbols of arity n,
 \[
 f^M(a_1, \ldots, a_n) = \begin{cases}
 f^A(a_1, \ldots, a_n) & \text{if } f \in \Sigma_1^F \\
 h^{-1}(f^B(h(a_1), \ldots, h(a_n))) & \text{otherwise}
 \end{cases}
 \]

- For predicate symbols of arity n,
 \[
 (a_1, \ldots, a_n) \in P^M \iff (a_1, \ldots, a_n) \in P^A \text{ if } P \in \Sigma_1^P \\
 (a_1, \ldots, a_n) \in P^M \iff (h(a_1), \ldots, h(a_n)) \in P^B \text{ otherwise}
 \]

By construction, M^{Σ_1, V_1} is isomorphic to A. In addition, it is easy to verify that h is an isomorphism of M^{Σ_2, V_2} to B.

It follows by the homomorphism theorem that M satisfies $\phi_1 \cup \phi_2$.

\[\Box\]

Correctness of Nelson-Oppen

To show that h is surjective, let $b \in V^B$. Then there exists a variable $x \in V^B$ such that $x^B = b$. But then $h(x^A) = b$.

Since h is bijective, it follows that $|V^A| = |V^B|$, and since $|A| = |B|$, we also have that $|A - V^A| = |B - V^B|$. We can therefore extend h to a bijective function h' from A to B.

By construction, h' is an isomorphism of A^V to B^V. Thus, by the previous theorem, we can obtain an interpretation satisfying $\phi_1 \cup \phi_2$.

\[\Box\]

Correctness of Nelson-Oppen

Theorem

Let Σ_1 and Σ_2 be signatures, with $\Sigma_1 \cap \Sigma_2 = \emptyset$, and for $i = 1, 2$, let ϕ_i be a set of Σ_i-formulas, and V_i the set of variables appearing in ϕ_i. As before, let $V = V_1 \cap V_2$. Then $\phi_1 \cup \phi_2$ is satisfiable iff there exists an interpretation A satisfying ϕ_1 and an interpretation B satisfying ϕ_2 such that:

1. $|A| = |B|$, and
2. $x^A = y^A$ iff $x^B = y^B$ for every pair of variables $x, y \in V$.

Proof

Clearly, if $\phi_1 \cup \phi_2$ is satisfiable in some interpretation M, then the only if direction holds by letting $A = M$ and $B = M$.

Consider the converse. Let $h : V^A \rightarrow V^B$ be defined as $h(x^A) = x^B$. This definition is well-formed by property 2 above.

In fact, h is bijective. To show that h is injective, let $h(a_1) = h(a_2)$. Then there exist variables $x, y \in V$ such that $a_1 = x^A, a_2 = y^A$, and $x^B = y^B$. By property 2, $x^A = y^A$, and therefore $a_1 = a_2$.

We can finally prove the correctness of the nondeterministic Nelson-Oppen method.

Theorem

Let T_i be a stably-infinite Σ_i-theory, for $i = 1, 2$, and suppose that $\Sigma_1 \cap \Sigma_2 = \emptyset$. Also, let ϕ_i be a set of Σ_i literals, $i = 1, 2$, and let S be the set of variables appearing in both ϕ_1 and ϕ_2. Then $\phi_1 \cup \phi_2$ is $T_1 \cup T_2$-satisfiable iff there exists an equivalence relation \sim on S such that $\phi_1 \cup A\phi_{\sim}$ is T_i-satisfiable, $i = 1, 2$.

Proof

Suppose M is an interpretation satisfying $\phi_1 \cup \phi_2$. We define an equivalence relation $x \sim y$ iff $x, y \in S$ and $x^M = y^M$. By construction, M is a T_i-interpretation satisfying $\phi_i \cup A\phi_{\sim}, i = 1, 2$.

Correctness of Nelson-Oppen

We can finally prove the correctness of the nondeterministic Nelson-Oppen method.

Theorem

Let T_i be a stably-infinite Σ_i-theory, for $i = 1, 2$, and suppose that $\Sigma_1 \cap \Sigma_2 = \emptyset$. Also, let ϕ_i be a set of Σ_i literals, $i = 1, 2$, and let S be the set of variables appearing in both ϕ_1 and ϕ_2. Then $\phi_1 \cup \phi_2$ is $T_1 \cup T_2$-satisfiable iff there exists an equivalence relation \sim on S such that $\phi_1 \cup A\phi_{\sim}$ is T_i-satisfiable, $i = 1, 2$.

Proof

Suppose M is an interpretation satisfying $\phi_1 \cup \phi_2$. We define an equivalence relation $x \sim y$ iff $x, y \in S$ and $x^M = y^M$. By construction, M is a T_i-interpretation satisfying $\phi_i \cup A\phi_{\sim}, i = 1, 2$.

13

14

15

16
Correctness of Nelson-Oppen

Suppose on the other hand that there exists an equivalence relation \sim of S such that $\phi_i \cup Ar_\sim$ is T_i-satisfiable, $i = 1, 2$. Since T_1 is stably-infinite, there is an infinite interpretation \hat{A} satisfying $\phi_1 \cup Ar_\sim$. Similarly, there is an infinite interpretation \hat{B} satisfying $\phi_2 \cup Ar_\sim$.

But by LST, we can take the least upper bound of \hat{A} and \hat{B} and obtain interpretations of that cardinality.

Then we have $|\hat{A}| = |\hat{B}|$ and $x^\hat{A} = y^\hat{A}$ iff $x^\hat{B} = y^\hat{B}$ for every variable $x, y \in S$. We can thus apply the previous theorem and obtain the existence of a $(\Sigma_1 \cup \Sigma_2)$-interpretation satisfying $\phi_1 \cup \phi_2$.

\[
\square
\]

Translation Validation

Ultimate Goal

- Guarantee correctness of optimizing compilers

Important in:

- Safety critical applications, where standards and regulations require that every compiler be certified
- Compilation into silicon, where a translation error is critically expensive

Translator vs. Translation Validation

Rather than verify the translator itself, verify the results of each run of the translator.

Advantages

- Much easier
- Less sensitive to changes in the translator

Drawback

- Additional overhead during compilation
- But not enough to outweigh the benefits

Two main types of optimizations

- Structure preserving optimizations
- Structure modifying optimizations

Structure preserving

- Use Validate proof rule
Validate Proof Rule

To verify that a target \(T \) correctly translates a source \(S \), establish:

- **control abstraction** \(\kappa \) from \(T \)'s basic blocks to \(S \)'s basic blocks
- **data abstraction** \(\alpha \) specifying source variables in terms of target expressions

\[
\alpha : PC = \kappa(pc) \land (p_1 \to V_1 = e_1) \land \cdots \land (p_n \to V_n = e_n)
\]

- invariant \(\phi_i \) for each block \(B \) referring only to target variables.
- **Verification Conditions**: For each pair of basic blocks \(i \) and \(j \), verify

\[
C_{ij} : \phi_i \land \alpha \land \rho_{ij}^T \land (\bigvee_{\pi \in \text{Paths}^S} \rho_{\pi}) \land \alpha' \land \phi_j',
\]

where \(\text{Paths}^S \) is the set of all simple source paths and \(\rho_{\pi} \) is the transition relation for the simple source path \(\pi \).

Example: INTSQRT

before

- \(B0 : \) N:=500; Y:=0; W:=1;
- \(B1 : \) if !(N \geq W) goto B3;
- \(B2 : \) W:=W+2*Y+3; Y:=Y+1; goto B1;
- \(B3 : \) if (w < 500) goto b1;

after

- \(b0 : \) t:=0; y:=0; w:=1;
- \(b1 : \) \{\(\phi_1 : t=2y \)\}
- \(b2 : \) \{\(\phi_1 : t=2y \)\}

Control abstraction \(\kappa : \)

\[
b0 \to B0
\]

Data abstraction:

\[
(PC = \kappa(pc) \land (Y = y) \land (W = w) \land (pc \neq b0 \to N = 500))
\]

CVC Input

\[
PC', Y', W' \land \text{query} \land \text{assertions}
\]

\[
\text{assert} (pc = 0) \quad \text{then} \quad 0
\]

\[
\text{elsif} (pc = 1) \quad \text{then} \quad 2
\]

\[
\text{else} \quad 3 \quad \text{endif}
\]

\[
Y = y \quad \text{and} \quad W = w \quad \text{and} \quad (pc / 0) \Rightarrow (N = 500)
\]

\[
\text{assert} (pc = 0) \quad \text{and} \quad pc' = 1 \quad \text{and} \quad t' = 0 \quad \text{and} \quad y' = 0 \quad \text{and} \quad w' = 1
\]

\[
\text{assert} (pc = 0) \quad \text{and} \quad pc' = 2 \quad \text{and} \quad N' = 500 \quad \text{and} \quad Y' = 0 \quad \text{and} \quad W' = 1 \quad \text{and} \quad (N' \geq W')
\]

\[
\text{query} (pc' = 0) \quad \text{then} \quad 0
\]

\[
\text{elsif} (pc' = 1) \quad \text{then} \quad 2
\]

\[
\text{else} \quad 3 \quad \text{endif}
\]

\[
Y' = y' \quad \text{and} \quad W' = w' \quad \text{and} \quad ((pc' / 0) \Rightarrow (N' = 500)) \quad \text{and} \quad t' = 2 \cdot y'
\]

\[
\text{query} (pc' = 0) \quad \text{then} \quad 0
\]

\[
\text{elsif} (pc' = 1) \quad \text{then} \quad 2
\]

\[
\text{else} \quad 3 \quad \text{endif}
\]

\[
Y' = y' \quad \text{and} \quad W' = w' \quad \text{and} \quad ((pc' / 0) \Rightarrow (N' = 500)) \quad \text{and} \quad t' = 2 \cdot y'
\]
Reordering Transformations

Important class of \textit{structure modifying} transformations.

Transformation is a simple \textit{permutation} of the original execution order.

Example: Loop Reversal

\begin{align*}
B(1) & \quad B(n) \\
B(2) & \quad B(n-1) \\
\vdots & \quad \vdots \\
B(n) & \quad B(1)
\end{align*}

Example: Loop Interchange

\begin{align*}
I & = J = \{1..n\} \\
F(j) & = n - j + 1
\end{align*}

Loop Transformations: Loop Fusion

\begin{align*}
& \text{for } i \in I \text{ by } \prec_I \text{ do } B_1(i) \\
& \text{for } i \in I \text{ by } \prec_I \text{ do } B_2(i)
\end{align*}

\begin{align*}
& \text{for } i \in I \text{ by } \prec_I \text{ do } B_1(i) \\
& \text{for } i \in I \text{ by } \prec_I \text{ do } B_2(i)
\end{align*}

\begin{align*}
& \text{for } i \in I \text{ by } \prec_I \text{ do } B_1(i) \\
& \text{for } i \in I \text{ by } \prec_I \text{ do } B_2(i)
\end{align*}

\begin{align*}
B_1(1) & \quad B_1(1) \\
\vdots & \quad \vdots \\
B_1(n) & \quad B_1(n) \\
B_2(1) & \quad B_2(n)
\end{align*}

\begin{align*}
B_1(1) & \quad B_2(1) \\
\vdots & \quad \vdots \\
B_1(n) & \quad B_2(n)
\end{align*}

Loop Transformations

\begin{align*}
& \text{for } i \in I \text{ by } \prec_I \text{ do } B(i) \implies \text{for } j \in J \text{ by } \prec_J \text{ do } B(F(j))
\end{align*}

Example: Loop Fusion

\begin{align*}
I & = \{1..2\} \times \{1..m\} \times \{1\} \\
J & = \{1\} \times \{1..m\} \times \{1..2\} \\
F(1, j, b) & = (b, j, 1)
\end{align*}
Permute Proof Rule

\[
\begin{align*}
\vec{i}_1 \ll \vec{i}_2 \land F^{-1}(\vec{i}_2) \ll F^{-1}(\vec{i}_1) \\
\implies B(\vec{i}_1) \sim B(\vec{i}_2) \sim B(F(\vec{i}_1))
\end{align*}
\]

\[
\text{for } \vec{i} \in \mathcal{I} \text{ by } \ll \text{ do } B(\vec{i}) \sim \text{ for } \vec{j} \in \mathcal{J} \text{ by } \ll \text{ do } B(\vec{j})
\]

Example

\[
\begin{align*}
\text{for } i = 1 \text{ to } M \\
\quad \text{for } j = 1 \text{ to } N \\
\implies \text{for } i = 1 \text{ to } M \\
\quad \text{for } j = 1 \text{ to } N \\
\end{align*}
\]

Verification Condition

\[
\begin{align*}
(i_1, j_1) < (i_2, j_2) \land (j_2, j_1) < (i_1, i_1) \\
\end{align*}
\]

Speculative Optimizations

- Optimizations which only apply under certain conditions
- Require a *run-time* test to check the condition

Example

\[
\begin{align*}
\text{for } i = 1 \text{ to } M \\
\quad \text{for } j = 1 \text{ to } N \\
\implies \text{for } i = 1 \text{ to } M \\
\quad \text{for } j = 1 \text{ to } N \\
\end{align*}
\]

CVC Input

\[
i_1, j_1, i_2, j_2, \text{arb_addr} : \text{INT};
\]

\[
a : \text{ARRAY INT OF ARRAY INT OF INT};
\]

\[
\text{QUERY} \\
\quad ((i_1 < i_2 \text{ OR } (i_1 = i_2 \text{ AND } j_1 < j_2)) \text{ AND } \quad \\
\quad (j_2 < j_1 \text{ OR } (j_2 = j_1 \text{ AND } i_2 < i_1)) \rightarrow \\
\quad ((\text{LET } a_1 : \text{ARRAY INT OF ARRAY INT OF INT} = \\
\quad a \text{ WITH } [i_1][j_1] := a[i_1-1][j_1-1] \text{ IN } \\
\quad a_1 \text{ WITH } [i_2][j_2] := a_1[i_2-1][j_2-1][\text{arb_addr}] = \\
\quad (\text{LET } a_1 : \text{ARRAY INT OF ARRAY INT OF INT} = \\
\quad a \text{ WITH } [i_2][j_2] := a[i_2-1][j_2-1] \text{ IN } \\
\quad a_1 \text{ WITH } [i_1][j_1] := a_1[i_1-1][j_1-1][\text{arb_addr}]);
\]

Permute Proof Rule

\[
\text{Example}
\]

Speculative Optimizations

- Optimizations which only apply under certain conditions
- Require a run-time test to check the condition

Example

\[
\text{for } i = 1 \text{ to } M \\
\text{for } j = 1 \text{ to } N \\
\]

\[
\text{if } k \geq 0 \\
\text{for } j = 1 \text{ to } N \\
\text{for } i = 1 \text{ to } M \\
\]

\[
\text{else} \\
\text{for } i = 1 \text{ to } M \\
\text{for } j = 1 \text{ to } N \\
\]

Deriving Run-Time Tests with CVC

Input: Verification Condition \(\phi \)
Output: Run-Time Test \(\psi \)

1. Let \(\psi = \text{true} \)
2. Check \(\psi \rightarrow \phi \)
3. If valid, return \(\psi \)
4. If invalid, get a counterexample \(\theta \)
5. Select a formula from \(\theta \), negate it, and add it (via conjunction) to \(\psi \)
6. Goto 2

Speculative Optimizations

Where do run-time tests come from?
- Hard-coded into compiler
- Dangerous potential source of compiler bugs

Can they be automatically generated?
- Use translation validation infrastructure
- Find necessary conditions under which validation fails
- Use these conditions to derive run-time test
- Tests are correct by construction

Deriving Run-Time Tests with CVC

Formula Selection Heuristics

- Must include a testable variable
- Prefer positive assertions to negated assertions
- Prefer smaller (simpler) formula to larger formula

Loop variables can be eliminated using known inequalities
Deriving Run-Time Tests with CVC

Example
\[
\begin{align*}
&\text{for } i = 1 \text{ to } M \\
&\quad \text{for } j = 1 \text{ to } N \\
&\quad A[i, j] \equiv A[i - 1, j - k]
\end{align*}
\]

\[
\begin{align*}
&\text{for } i = 1 \text{ to } M \\
&\quad A[i, j] \equiv A[i - 1, j - k]
\end{align*}
\]

Verification Condition
\[
\begin{align*}
&(i_1, j_1) < (i_2, j_2) \land (j_2, i_2) < (j_1, i_1) \\
&\quad \implies A[i_1, j_1] := A[i_1 - 1, j_1 - k] \\
&\quad A[i_2, j_2] := A[i_2 - 1, j_2 - k] \\
&\quad A[i_2, j_2] := A[i_2 - 1, j_2 - k] \\
&\quad A[i_1, j_1] := A[i_1 - 1, j_1 - k]
\end{align*}
\]

CVC Output
InValid.
Current stack level is 0 (scope 7).
% Active assumptions:
ASSERT (arb_addr = i2);
ASSERT ((1 + (-1 * i2) + i1) = 0);
ASSERT ((0 + k + (-1 * j2) + j1) = 0);
ASSERT NOT (j2 = j1);
Only the third assertion meets our criteria.
Negating gives the condition: \(k \neq j2 - j1 \).
Using the known inequality \(j2 - j1 < 0 \) results in the run-time test: \(k \geq 0 \).

CVC Input
\[
i_1, j_1, i_2, j_2, k, \text{ arb_addr : INT};
a : \text{ARRAY INT OF ARRAY INT OF INT};
\]
QUERY ((i1 < i2 OR (i1 = i2 AND j1 < j2)) AND
\[
(j2 < j1 OR (j2 = j1 AND i2 < i1))) \Rightarrow
\[
((\text{LET } a1 : \text{ARRAY INT OF ARRAY INT OF INT} =
\quad a \text{ WITH } [i2][j2] := a[i2-1][j2-k][\text{arb_addr}] =
\text{LET } a1 : \text{ARRAY INT OF ARRAY INT OF INT} =
\quad a \text{ WITH } [i2][j2] := a[i2-1][j2-k] \text{ IN}
\quad a \text{ WITH } [i1][j1] := a[i1-1][j1-k][\text{arb_addr}]));
\]

Deriving Run-Time Tests with CVC

More Interesting Example
procedure copy\((p, r, N) \)
begin
for \(i = 0 \) to \(N - 1 \)
\[
*(p + i) := *(r + i)
\]
end
... copy\((p, r, N) \)
copy\((q, r, N) \)
Deriving Run-Time Tests with CVC

After Inlining

\[
\begin{align*}
& \text{for } i = 0 \text{ to } N - 1 \\
& \quad (p + i) := (r + i) \\
& \text{for } i = 0 \text{ to } N - 1 \\
& \quad (q + i) := (r + i)
\end{align*}
\]

Perfect Candidate for Fusion

\[
\begin{align*}
& \text{for } i = 0 \text{ to } N - 1 \\
& \quad (p + i) := (r + i) \\
& \quad (q + i) := (r + i)
\end{align*}
\]

CVC Input

\[
\begin{align*}
p, q, r & : \text{INT} \\
i_1, i_2, \text{arb_addr} & : \text{INT} \\
M & : \text{ARRAY INT OF INT} \\
\text{QUERY} & \\
(i_1 < i_2) & => \\
(\text{LET } M1 & : \text{ARRAY INT OF INT} = \\
M & \text{WITH } [q + i_1] := M[r + i_1] \text{ IN} \\
M1 & \text{WITH } [p + i_2] := M1[r + i_2])\{\text{arb_addr}\} = \\
(\text{LET } M1 & : \text{ARRAY INT OF INT} = \\
M & \text{WITH } [p + i_2] := M[r + i_2] \text{ IN} \\
M1 & \text{WITH } [q + i_1] := M1[r + i_1])\{\text{arb_addr}\};
\end{align*}
\]

CVC Output

We initially get a counter-example which includes the assertion:

\[
q - r = i_2 - i_1
\]

Asserting its negation, we get another counter-example with the assertion:

\[
r - p = i_2 - i_1
\]

Repeating this one more time yields:

\[
q - p = i_2 - i_1.
\]

Under the negation of these three assertions, the verification condition is valid.

Using the inequality \(0 < i_2 \quad i_1 < N\), we get the run-time test:

\[
\begin{align*}
&q - r \leq 0 \text{ OR } q - r \geq N \text{ AND} \\
&q - p \leq 0 \text{ OR } q - p \geq N \text{ AND} \\
r - p \leq 0 & \text{ OR } r - p \geq N
\end{align*}
\]
Fusion Example

if \((q - r \leq 0 \text{ OR } q - r \geq N) \text{ AND} \)
\((q - p \leq 0 \text{ OR } q - p \geq N) \text{ AND} \)
\((r - p \leq 0 \text{ OR } r - p \geq N)\)

for \(i = 0 \text{ to } N - 1\)
\((p + i) := (r + i)\)
\((q + i) := (r + i)\)

else

for \(i = 0 \text{ to } N - 1\)
\((p + i) := (r + i)\)
\((q + i) := (r + i)\)