Review

- Combining Decision Procedures

- Example Application: Translation Validation
Outline

- Number Theory
- Natural Numbers with Successor
- Natural Numbers with Successor and Less-Than
- Presburger Arithmetic

Source: Enderton, 3.0 - 3.2.
Number Theory

With a general understanding of first-order languages and theories, we now focus on a specific language, the language of number theory.

The parameters are $0, S, <, +, \times, E$.

Let N be the intended model of this language:

- $domN = \mathcal{N}$, the natural numbers.
- $0^N = 0$,
- $S^N = \text{the successor function}: S(n) = n + 1$.
- $<^N = \text{the less-than relation on } \mathcal{N}$.
- $\times^N = \text{multiplication on } \mathcal{N}$.
- $E^N = \text{exponentiation on } \mathcal{N}$.

Number theory is the set of all sentences in this language which are true in N. We denote this theory ThN.
Reducts of Number Theory

Besides considering the model \(\mathcal{N} \), we also consider the following models which are restrictions of \(\mathcal{N} \) to sublanguages:

- \(N_S = (\mathcal{N}; 0, S) \)
- \(N_L = (\mathcal{N}; 0, S, <) \)
- \(N_A = (\mathcal{N}; 0, S, <, +) \)
- \(N_M = (\mathcal{N}; 0, S, <, +, \times) \)

We consider the following questions for each model:

- Is the theory of this model decidable?
- If so, how can the theory be axiomatized?
- Is it finitely axiomatizable?
- What subsets of \(\mathcal{N} \) are definable in the model?
- What do the nonstandard models of the theory look like?
Notation

We will use infix notation: $x < y$ instead of $< xy$ etc.

For each natural number k, we denote the associated term by $S^k 0$.

This term is called the *numeral* for k.
Natural Numbers with Successor

We begin with the simplest reduct:

\[N_S = (\mathcal{N}; 0, S). \]

Consider the theory \(Th N_S \). What are some of its sentences?
Natural Numbers with Successor

We begin with the simplest reduct:

\[N_S = (\mathcal{N}; 0, S). \]

Consider the theory \(Th \mathcal{N}_S \). What are some of its sentences?

- **S1.** \(\forall x \; Sx \neq 0. \)
- **S2.** \(\forall x \; \forall y \; (Sx = Sy \rightarrow x = y). \)
- **S3.** \(\forall y \; (y \neq 0 \rightarrow \exists x \; y = Sx). \)
- **S4.1** \(\forall x \; Sx \neq x. \)
- **S4.2** \(\forall x \; SSx \neq x. \)
- ...
- **S4.n** \(\forall x \; S^n x \neq x. \)

Let \(A_S \) be the above set of sentences (including \(S4.n \) for each \(n \)).
Natural Numbers with Successor

Now, consider the set A_S.

What does an arbitrary model M of A_S look like?
Natural Numbers with Successor

Now, consider the set A_S.

What does an arbitrary model M of A_S look like?

M must contain the standard points:

$$0^M \rightarrow S^M(0^M) \rightarrow S^M(S^M(0^M)) \rightarrow \cdots$$
Natural Numbers with Successor

Now, consider the set A_S.

What does an arbitrary model M of A_S look like?

M must contain the standard points:

$$0^M \rightarrow S^M(0^M) \rightarrow S^M(S^M(0^M)) \rightarrow \ldots$$

Can M contain an element a which is not among the standard points?
Natural Numbers with Successor

Now, consider the set A_S.

What does an arbitrary model M of A_S look like?

M must contain the *standard* points:

$$0^M \rightarrow S^M(0^M) \rightarrow S^M(S^M(0^M)) \rightarrow \cdots$$

Can M contain an element a which is not among the standard points?

Such an element must be part of a *Z-chain*:

$$\cdots \circ \rightarrow \circ \rightarrow a \rightarrow S^M(a) \rightarrow S^M(S^M(a)) \rightarrow \cdots$$
Natural Numbers with Successor

Now, consider the set A_S.

What does an arbitrary model M of A_S look like?

M must contain the standard points:

$$0^M \rightarrow S^M(0^M) \rightarrow S^M(S^M(0^M)) \rightarrow \ldots$$

Can M contain an element a which is not among the standard points?

Such an element must be part of a Z-chain:

$$\cdots \circ \rightarrow \circ \rightarrow a \rightarrow S^M(a) \rightarrow S^M(S^M(a)) \rightarrow \cdots$$

Thus, a model of A_S contains the standard points and 0 or more Z-chains.
Natural Numbers with Successor

Theorem

If M and M' are models of A_S having the same number of Z-chains, then they are isomorphic.

Proof

Clearly, there is an isomorphism between the standard parts of M and M'. Since they have the same number of Z-chains, we can extend this isomorphism to map each Z-chain of M to a Z-chain of M'.

Recall that a theory T is λ-categorical iff all models of T having cardinality λ are isomorphic.

Theorem

$Cn A_S$ is λ-categorical for any uncountable cardinal λ.

Proof

Since the standard part of a model of A_S only contributes a countably infinite number of elements, a model of A_S of cardinality λ must have λ different Z-chains. By the above theorem, any two such models are isomorphic.
Natural Numbers with Successor

Theorem

$Cn A_S$ is a complete theory.

Proof

Recall the Los-Vaught test:

Let T be a theory in a countable language such that

- T is λ-categorical for some infinite cardinal λ.
- All models of T are infinite.

Then T is complete.

By the previous theorem, $Cn A_S$ is λ-categorical for any uncountable cardinal λ. Furthermore, $Cn A_S$ has no finite models. Therefore $Cn A_S$ is complete.
Natural Numbers with Successor

Corollary

\[Cn A_S = Th N_S. \]

Proof

We know that \(Cn A_S \subseteq Th N_S \). The first theory is complete, and the second is satisfiable. Therefore, the theories must be equal. (Why?)

Corollary

\(Th N_S \) is decidable.

Proof

Any complete and axiomatizable theory is decidable. \(A_S \) is a decidable set of axioms for this theory.
Elimination of Quantifiers

Once one knows that a theory is decidable, the next question is how to find an effective procedure for deciding it.

A common technique for providing decision procedures is the method of elimination of quantifiers.

A theory T admits elimination of quantifiers iff for every formula ϕ there is a quantifier-free formula ψ such that

$$T \models (\phi \leftrightarrow \psi).$$

The following theorem reduces the quantifier elimination problem to a particular special case.

Theorem

Assume that for every formula ϕ of the form $\exists x (\alpha_0 \land \ldots \land \alpha_n)$, where each α_i is a literal, there is a quantifier-free formula ψ such that $T \models (\phi \leftrightarrow \psi)$. Then T admits elimination of quantifiers.
Quantifier Elimination

Proof

The proof is by induction on formulas. Clearly, every atomic formula is equivalent to a quantifier-free formula (itself). Suppose that α and β are formulas with quantifier-free equivalents α' and β'.

The propositional connective cases are trivial: $T \models \neg \alpha \leftrightarrow \neg \alpha'$, $T \models (\alpha \land \beta) \leftrightarrow (\alpha' \land \beta')$, etc.

For the quantifier cases, we can rewrite $\forall x. \alpha$ as $\neg \exists x. \neg \alpha$, so it is sufficient to consider $\exists x. \alpha$. By induction hypothesis, this is equivalent to $\exists x. \alpha'$, where α' is quantifier-free. But now, we can convert α' to DNF and distribute the existential quantifier over the disjunction to get $(\exists x. \gamma_0) \lor (\exists x. \gamma_1) \lor \cdots \lor (\exists x. \gamma_n)$, where each γ_i is a conjunction of literals. But then, by assumption, we can find an equivalent quantifier-free formula for each $\exists x. \gamma_i$, resulting in an equivalent quantifier-free formula for $\exists x. \alpha$. \qed
Elimination of Quantifiers

Theorem

$Th\overline{N}_S$ admits elimination of quantifiers.

Proof

Consider a formula $\exists x (\alpha_0 \land \ldots \land \alpha_l)$, where each α_i is a literal.

Note that the only possible terms in the language are $S^k u$ where u is either 0 or a variable. Each α_i must be an equation or disequation between two such terms.

If x does not appear in some α_i, we can move α_i outside the quantifier. The remaining literals have the form $S^m x = S^n u$ or $S^m x \neq S^n u$ where u is 0 or a variable.

If u is x, then the equation is true if $m = n$ and false otherwise. We can use $0 = 0$ to represent true, and $0 \neq 0$ to represent false.

If, after making the above simplifications, all remaining literals are disequations, then the formula is true. (Why?)
Elimination of Quantifiers

Proof (cont.)

We have $\exists x \left(\alpha_0 \land \ldots \land \alpha_i \right)$, where each α_i is of the form $S^m x = S^n u$ or $S^m x \neq S^n u$ where u is 0 or a variable other than x. We also know there is at least one equation.

Suppose α_i is an equation $S^m x = t$. We replace α_i by $t \neq 0 \land \ldots \land t \neq S^{m-1} 0$ (since x cannot be negative) and then in each other α_j, we replace $S^k x = u$ by $S^k t = S^m u$.

After processing each literal containing x, the new formula does not contain x, so the quantifier can be eliminated. \square
Natural Numbers with Successor

We can now give a decision procedure for CnA_S. Suppose we are given a sentence σ. Using quantifier elimination, we can find a quantifier-free sentence τ such that $A_S \models (\sigma \leftrightarrow \tau)$.

Note that τ is a sentence because quantifier elimination does not introduce any free variables, so if we start with a sentence, we will finish with a sentence.

An atomic sentence must be of the form $S^k0 = S^l0$ and each such sentence can be evaluated to true or false using A_S. Thus any Boolean combination of such sentences can also be evaluated to true or false.

This also provides an alternative proof that CnA_S is complete, since given any sentence σ we can compute its quantifier-free equivalent τ which must be either true or false.

Finally, we can use quantifier-elimination to show that a subset of \mathcal{N} is definable in \mathcal{N}_S iff either it is finite or its complement is finite. (Why?)
Natural Numbers with Successor

Example

\[\forall x \, \forall y \, (x \neq y \rightarrow (x \neq 0 \lor y \neq 0)) \in Cn A_S \]
Natural Numbers with Successor

Example

\[\forall x \forall y \left(x \neq y \rightarrow (x \neq 0 \lor y \neq 0) \right) \in CnA_S \]

iff

\[\neg \exists x \exists y \neg (x \neq y \rightarrow (x \neq 0 \lor y \neq 0)) \in CnA_S \]
Natural Numbers with Successor

Example

\[\forall x \forall y (x \neq y \rightarrow (x \neq 0 \lor y \neq 0)) \in \text{Cn} A_S \]

iff

\[\neg \exists x \exists y \neg (x \neq y \rightarrow (x \neq 0 \lor y \neq 0)) \in \text{Cn} A_S \]

iff

\[\neg \exists x \exists y (x \neq y \land x = 0 \land y = 0) \in \text{Cn} A_S \]
Natural Numbers with Successor

Example

\[\forall x \forall y \ (x \neq y \rightarrow (x \neq 0 \lor y \neq 0)) \in CnA_S \]

iff

\[\neg \exists x \exists y \ \neg (x \neq y \rightarrow (x \neq 0 \lor y \neq 0)) \in CnA_S \]

iff

\[\neg \exists x \exists y \ (x \neq y \land x = 0 \land y = 0) \in CnA_S \]

iff

\[\neg \exists x \ (x \neq 0 \land x = 0) \in CnA_S \]
Natural Numbers with Successor

Example

\(\forall x \forall y (x \neq y \rightarrow (x \neq 0 \lor y \neq 0)) \in CnA_S \)

iff

\(\neg \exists x \exists y \neg (x \neq y \rightarrow (x \neq 0 \lor y \neq 0)) \in CnA_S \)

iff

\(\neg \exists x \exists y (x \neq y \land x = 0 \land y = 0) \in CnA_S \)

iff

\(\neg \exists x (x \neq 0 \land x = 0) \in CnA_S \)

iff

\(\neg (0 \neq 0) \in CnA_S \)
Natural Numbers with Successor

Example

\[\forall x \forall y (x \neq y \rightarrow (x \neq 0 \lor y \neq 0)) \in CnA_S \]

iff

\[\neg \exists x \exists y \neg(x \neq y \rightarrow (x \neq 0 \lor y \neq 0)) \in CnA_S \]

iff

\[\neg \exists x \exists y (x \neq y \land x = 0 \land y = 0) \in CnA_S \]

iff

\[\neg \exists x (x \neq 0 \land x = 0) \in CnA_S \]

iff

\[\neg(0 \neq 0) \in CnA_S \]

iff

\[0 = 0 \in CnA_S \]
Natural Numbers with Successor and Less-Than

The ordering relation \(\{ \langle m, n \rangle \mid m < n \} \) is not definable in \(N_S \).

Thus, suppose we add the less-than symbol, \(<\), to our language, and consider the standard model \(N_L = (\mathbb{N}; 0, S, <) \).

We will show that \(ThN_L \) is decidable and admits elimination of quantifiers. However, unlike \(ThN_S \), it is finitely axiomatizable.
Natural Numbers with Successor and Less-Than

The ordering relation \(\{ \langle m, n \rangle \mid m < n \} \) is \textit{not} definable in \(N_S \).

Thus, suppose we add the less-than symbol, \(<\), to our language, and consider the standard model \(N_L = (\mathcal{N}; 0, S, <) \).

We will show that \(ThN_L \) is decidable and admits elimination of quantifiers. However, unlike \(ThN_S \), it is finitely axiomatizable.

Consider the following set \(A_L \) of sentences:

- **S3.** \(\forall y (y \neq 0 \rightarrow \exists x \ y = Sx) \)
- **L1.** \(\forall x \forall y (x < Sy \leftrightarrow x \leq y) \)
- **L2.** \(\forall x \ x \neq 0 \)
- **L3.** \(\forall x \forall y (x < y \lor x = y \lor y < x) \)
- **L4.** \(\forall x \forall y (x < y \rightarrow y \not< x) \)
- **L5.** \(\forall x \forall y \forall z (x < y \rightarrow y < z \rightarrow x < z) \)

Our goal is to show that \(\text{cn}A_L = ThN_L \).
Natural Numbers with Successor and Less-Than

We first show that $A_S \subseteq Cn A_L$.

1. $A_L \vdash \forall x \ x < Sx$ (by L1).
2. $A_L \vdash \forall x \ x \not< x$ (by L4).
3. $A_L \vdash \forall x \ \forall y \ (x \not< y \leftrightarrow y \leq x)$ (by L3, L4, (2)).
4. $A_L \vdash \forall x \ \forall y \ (x < y \leftrightarrow Sx < Sy)$ (by L1, (3)).

Recall the definition of A_S:

- S1. $\forall x \ Sx \not= 0$.
- S2. $\forall x \ \forall y \ (Sx = Sy \rightarrow x = y)$.
- S3. $\forall y \ (y \not= 0 \rightarrow \exists x \ \ y = Sx)$.
- S4. $\forall x \ S^n x \not= x$.

S3 is already in A_L. S1 follows from L2 and (1). S2 follows from (4), L3, and (2). S4.n follows from (1), (2), and L5.

Thus, a model M of A_L consists of a standard part plus 0 or more Z-chains. In addition the elements are ordered by $<^M$.
Natural Numbers with Successor and Less-Than

Theorem

The theory $CN A_L$ admits elimination of quantifiers.

Proof

Again, consider a formula $\exists x (\beta_0 \land \ldots \land \beta_l)$, where each β_i is a literal. As before, the only possible terms in the language are $S^k u$ where u is either 0 or a variable.

There are now two possibilities for atomic formulas:

$$S^m u = S^n t$$ and $$S^m u < S^n t.$$

First, we can eliminate negation. We replace $t_1 \not\leq t_2$ by $t_2 \leq t_1$. We replace $t_1 \neq t_2$ by $t_1 < t_2 \lor t_2 < t_1$.

By distributing \exists over \lor (note there is a typo in the book), we obtain formulas of the form $\exists x (\alpha_0 \land \ldots \land \alpha_p)$, where each α_i is an atomic formula.

As before, if x does not appear in some α_i, we can move it outside the quantifier. Also, if some α_i is an equation $S^m x = t$, we can proceed as in the proof for N_S.

20
Natural Numbers with Successor and Less-Than

Proof (continued)

The remaining literals must have the form $S^m x < S^n u$ or $S^m u < S^n x$ where u is 0 or a variable. Notice that if u is x, then the formula can be replaced with true or false. We can rewrite the formula as

$$\exists x \left(\bigwedge_i t_i < S^{m_i} x \land \bigwedge_j S^{n_j} x < u_j \right).$$

If the second conjunction is empty, the formula is true. If the first conjunction is empty, we can replace the formula by

$$\bigwedge_j S^{n_j} 0 < u_j.$$

Otherwise, we form

$$\left(\bigwedge_{i,j} S^{n_j+1} t_i < S^{m_i} u_j \land \right) \land \bigwedge_j S^{n_j} 0 < u_j.$$
Natural Numbers with Successor and Less-Than

Corollary

$Cn A_L$ is complete.

Proof

As before, given a sentence σ, we can find a quantifier-free sentence τ which we can then evaluate to true or false.

Corollary

$Cn A_L = Th N_L$

Proof

We have $Cn A_L \subseteq Th N_L$, $Cn A_L$ is complete, and $Th N_L$ is satisfiable.

Corollary

$Th N_L$ is decidable.

Proof

$Th N_L$ is complete and axiomatizable. Also, quantifier elimination gives an explicit decision procedure.
Corollary

A subset of \mathcal{N} is definable in \mathcal{N}_L iff it is either finite or has finite complement.

Proof

Exercise. \hfill \square

Corollary

The addition relation $\{\langle m, n, p \rangle \mid m + n = p\}$ is not definable in \mathcal{N}_L.

Proof

If we could define addition, we could define the set of even natural numbers: $\exists x \, x + x = y$. But this set is neither finite nor has finite complement. \hfill \square
Presburger Arithmetic

Now, suppose we add the addition symbol, $+$, to our language, and consider the standard model $\mathbf{N}_A = (\mathbb{N}; 0, S, <, +)$.

We state the following results without proof.

Theorem

Presburger arithmetic is decidable.

A set D of natural numbers is **periodic** if there exists some positive p such that $n \in D$ iff $n + p \in D$. D is **eventually periodic** iff there exists positive numbers M and p such that if $n > M$, then $n \in D$ iff $n + p \in D$.

Theorem

A set of natural numbers is definable in \mathbf{N}_A iff it is eventually periodic.

Corollary

The multiplication relation $\{ \langle m, n, p \rangle | p \in \mathbb{N} \land m \times n = p \}$ is not definable in \mathbf{N}_A.