Overview

- Course information
 - (personnel, policy, schedule, misc.)
- What is OS? What does it do?
- History of OS
- Computer Architecture
Instructor

Hubertus Franke

- Ph.D. EE Vanderbilt University 1992
- Diplom Informatik, Technical University Karlsruhe, Germany, 1987
- Research Staff Member and Manager Operating Systems at IBM T.J.Watson Research Center in Yorktown Heights, NY (since 1993/89)

Research:

- Operating Systems:
 - Linux, AIX, object oriented OS (K42)
 - Scheduling, memory management, ..
- Computer Architecture:
 - Multicore processors and Systems on a chip
- High Performance Computing:
 - MPI (Message Passing Interfaces), Gang Scheduling
- Software Engineering, Compilers and Robotics.
- ~100 publications in these areas
- ~30 patents
Overview

- **Teaching Assistants:**
 - [A-M]: Jiakai Zhang (zhjk@nyu.edu)
 - [L-Z]: Monish Vachhani (mkv218@nyu.edu)

- **Class Website**
 - http://cs.nyu.edu/courses/Fall12/CSCI-GA.2250-001/

- **Class List Setup:**
 - Csci_ga_2250_001_fa12@cs.nyu.edu
Required Textbook

- Excellent Summary by Prof. Gottlieb
 - http://cs.nyu.edu/~gottlieb/courses/os/class-notes.html
Classes and Office Hours

- **Office hours:**
 - Wed ~6:00 – 7PM (Room 328)
 - Wed >= 9PM (classroom) on demand
About this course...

Principles
- System concepts
- OS design
- Some theory
- Rationale
- Practice

Goals
- Understand OS decisions
- Basis for future learning
- Get hands dirty
Grading

- Final exam: 30%
- Midterm exam: 15%
- Homeworks: 10%
- 3-4 Programming Assignments: 45%
 - Linker
 - Scheduling
 - Memory Management
 - I/O scheduler (time permitting)
Grading policy

■ Homework:
 □ Due beginning next class
 □ Not accepted late

■ Labs:
 □ Due several lectures later (typically 2/3 weeks)
 □ 2 points penalty per day late
 ■ 1 week late -> 86/100
 □ Discussions on the labs is allowed, but
 ■ programming MUST be your own code
 ■ code will be compared among students
 □ Allow ~10hr programming and testing
Cheating Policy

- Academic integrity

 http://cs.ny.edu/web/Academic/Graduate/academic_integrity.html

- Your homework and exams must be your own - we have a zero tolerance policy towards cheating of any kind and any student who cheats will get a failing grade in the course.

- Both the cheater and the student who aided the cheater will be held responsible for the cheating
Lecture Format (1)

- Help you understand important and hard OS concepts, following the Stallings book.

- Many OS concepts lend themselves to other areas in computer science and applications (and borrow from there)

- I do not assume knowledge of Operating Systems

 - If inadvertently a concept is introduced you have not heard about ➔ ask questions

- 5 mins halftime break in 1:50 lecture
Lecture Format (2)

- Lectures do not cover everything
 - Not all questions in homework or exam are from lectures

- Students responsibility
 - Attend lectures
 - Read textbook
 - Homework, Programming, Exam
 - Periodically check web page, Read/utilize mailing list

- Ask questions,
 - this is a small class, take advantage of it.
QUESTIONS?

- Organizations
- Timeline
- Grading
- Homework
LAB assignment #1

Due 9/19
LAB #1: Write a Linker

- Link “==merge” together multiple parts of a program

- What problem is solved?
 - External references need to be resolved
 - Module relative addressing needs to be fixed

```c
#include <stdio.h>

void print_hello()
{
    printf("Hello world\n");
}
```

```c
#include <stdio.h>

extern void print_hello();

int main(int argc, char **argv)
{
    print_hello();
}
```
Lab #1: Relocation

- **Assigning Module Addresses:**

 - Module M5 will go here. Its relocation constant is L1+L2+L3+L4

- **Symbol relocation:**

 - Base M4 = L1+L2+L3
 - Value of f = BaseM4 + rel
LAB #1: Write a Linker

- Simplified module specification
 - List of symbols defined and their value by module
 - List of symbols used in module (including external)
 - List of “instructions”

Addressing
I: Immediate
R: Relative
A: Absolute
E: External
Lab #1: Write a Linker

Fancy Output (not required !!!)

Symbol Table

xy=2
z=15

Memory Map
+0
0: R 1004 1004+0 = 1004
1: I 5678 5678
2: xy: E 2000 ->z 2015
3: R 8002 8002+0 = 8002
4: F 7001 ->xy 7002
+5
0: R 8001 8001+5 = 8006
1: E 1000 ->z 1015
2: E 1000 ->z 1015
3: E 3000 ->z 3015
4: R 1002 1002+5 = 1007
5: A 1010 1010
+11
0: R 5001 5001+11= 5012
1: E 4000 ->z 4015
+13
0: A 8000 8000
1: E 1001 ->z 1015
2: z: E 2000 ->xy 2002

Required output

Symbol Table

xy=2
z=15

Memory Map
000: 1004
001: 5678
002: 2015
003: 8002
004: 7002
005: 8006
006: 1015
007: 1015
008: 3015
009: 1007
010: 1010
011: 5012
012: 4015
013: 8000
014: 1015
015: 2002