Programming Assignment 2

Assigned: Sept. 24
Due: Oct. 8

Note: The assignment is long, but the code is actually very short; perhaps 20 lines in total.

Suppose that A and B are electrically charged objects, located at points p_A and p_B with charges Q_A and Q_B. Then the force $\vec{F}_A(B)$ that B exerts on A is the vector

$$\vec{F}_A(B) = \frac{Q_A \cdot Q_B}{|p_A - p_B|^2} \frac{p_A - p_B}{|p_A - p_B|}$$

In the above product, the first factor is the magnitude of the force, which is the product of the charges divided by the distance squared; the second factor is the direction of the force, which is the direction from B to A.

If there are several objects $B_1 \ldots B_k$ exerting a force on A, then the total force on A is the sum of the forces:

$$\vec{F}_A(\{B_1 \ldots B_k\}) = \sum_{i=1}^{k} \vec{F}_A(B_i)$$

If the charge on A and the position of all the charges is fixed, then the net force is a linear function of vector of charges $\langle \vec{Q} = Q_1 \ldots Q_k \rangle$.

For instance, in two dimensions, we could have the following situation, illustrated in the picture.

| Object | Location | Charge | $|p_A - p_B|$ | Magnitude of $\vec{F}_A(B)$ | $\vec{F}_A(B)$ |
|--------|---------|-------|-------------|----------------|-------------|
| A | $(0,1)$ | 1 | 1 | — | — |
| B_1 | $(4,4)$ | 50 | 5 | 50/25 = 2 | $2 \cdot (-4,-3)/5 = (-1.60,-1.20)$ |
| B_2 | $(1,0)$ | -6 | $\sqrt{2}$ | -6/2 = -3 | $-3 \cdot (-1,1)/\sqrt{2} = (2.12,-2.12)$ |
| B_3 | $(-3,1)$ | 36 | 3 | 36/9 = 4 | $4 \cdot (3,0)/3 = (4.00, 0.00)$ |
| Total | | | | $4.52, -3.32$ | — |

1
Problem 1 (50 points)

Write a function function $F = \text{ForceMatrix}(PA, PB)$ where

- PA is a 2-dimensional column vector of the coordinates of object A of charge 1.
- PB is a $2 \times k$ matrix, where the ith column, $PB[:, i]$ is the coordinates of object B_i.
- F, the value returned is the $2 \times k$ matrix with the property that for any vector of charges \vec{Q}, the value $F \cdot \vec{Q}$ is the net force on A.

For instance, in the above example, we could call

```matlab
> PA = [0;1];
> PB = [4,1,-3; 4,0,1];
> F = ForceMatrix(PA,PB)
F =
  -0.0320   -0.3536   0.1111
     -0.0240   0.3536   0
> QB = [50; -6; 36];
> F*QB
ans =
     4.5213
    -3.3213
```
Problem 2 (5 points)

Write the following two functions: function \(F = \text{TotalForce}(PA, PB, QB) \) and \(C = \text{PossibleCharge}(PA, PB, TF) \).

In both of these \(PA, PB \) are the same as in problem 1. In \(\text{NetForce} \), the input \(QB \) is a column vector of the charges on \(B \) and the value returned \(F \) is the total force on \(A \), a column vector. In \(\text{PossibleCharge} \), \(TF \) is the total force as a column vector and the value returned \(C \) is a possible charge vector that would give rise to that force. If there are \(k > 2 \) then there are multiple possible answers but your code only has to return one of these. For example, using the same values of \(PA, PB, QB \) we could write,

\[
F = \text{TotalForce}(PA, PB, QB)
\]

\[
F = \begin{bmatrix} 4.5213 \\ -3.3213 \end{bmatrix}
\]

\[
C = \text{PossibleCharge}(PA, PB, F)
\]

\[
C = \begin{bmatrix} 0 \\ -9.3941 \\ 10.8000 \end{bmatrix}
\]

\[
\text{TotalForce}(PA, PB, C)
\]

\[
\text{ans} = \begin{bmatrix} 4.5213 \\ -3.3213 \end{bmatrix}
\]

Having done problem 1, each of these functions should consist of one quite simple line of MATLAB. The code for \(\text{TotalForce} \) should always work, unless \(A \) is at the same position as one of the \(B_i \)'s. The code for \(\text{PossibleCharge} \) may fail in exceptional cases, such as your solution to problem 3.C of problem set 2.

Problem 3 (45 points)

Suppose as before there are \(k \) fixed charges \(B_1 \ldots B_k \) in the plane. You know the locations, but not the value of the charges, and you want to find out the value of the charges. A way to do this is as follows: You take an object \(A \) with charge 1, you put it at various points in the plane, and you measure the net force on it.

Write a function \(\text{function } C = \text{FindCharges}(PA, PB, TF) \) where

- \(PA \) is a \(2 \times w \) matrix, where the \(i \)th column, \(PA[:,i] \) is the coordinates of the \(i \)th placement of the test charge \(A \). The dimension \(w \) is the number of different placements you try.
- \(PB \) is the locations of the charges \(B_1 \ldots B_k \), as above.
- \(F \) is a \(2 \times q \) matrix, where the \(i \)th column \(F[:,i] \) is the total force on \(A \) in its \(i \)th placement.
- The value returned \(C \) is the \(k \)-dimensional column vector of charges on the \(B_i \).

Hint: Look up the Matlab \texttt{reshape} function.
For instance, in the above example, we could call

```matlab
> PA = [0,2;1,0];
> PB = [4,1,-3; 4,0,1];
> TF(:,1) = TotalForce(PA(:,1),PB,QB);
> TF(:,2) = TotalForce(PA(:,2),PB,QB);
> C = FindCharges(PA,PB,TF)
C =
    50.0000
   -6.0000
    36.0000
```