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ABSTRACT
We present a new data structure that facilitates approximate
nearest neighbor searches on a dynamic set of points in a
metric space that has a bounded doubling dimension. Our
data structure has linear size and supports insertions and
deletions in O(log n) time, and finds a (1 + ǫ)-approximate

nearest neighbor in time O(log n) + (1/ǫ)O(1). The search
and update times hide multiplicative factors that depend on
the doubling dimension; the space does not. These perfor-
mance times are independent of the aspect ratio (or spread)
of the points.

Categories and Subject Descriptors: F.2.2 [Nonnumer-
ical Algorithms and Problems]:Sorting and searching, com-
putations on discrete structures; E.1 [Data Structures]:Graphs
and networks, trees.

General Terms: Algorithms.

Keywords: Approximate nearest neighbor search.

1. INTRODUCTION
Nearest neighbor. Approximate nearest neighbor search

(ANN) is one of the basic operations computed on data sets
comprising numeric vectors, i.e. points. The problem asks
to preprocess a set X of points in a certain metric space M ,
so that given a new query point q ∈ M , a point near to q in
X can be located efficiently. This problem has applications
in data mining, database queries and related fields.

For high dimensional metrics, ANN may require signifi-
cant computation time. This is due to the inherent com-
plexity of the metric, and has been dubbed the “curse of
dimensionality.” Hence it is natural to study ANN tech-
niques for point sets which are effectively lower dimensional,
although inhabiting a high dimensional space.

A recent successful approach has been to consider point
sets that have a small doubling dimension: Let the space
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within radius r of a point be called the ball centered at that
point. If point set X has doubling dimension λ, then all
points of X that are covered by a ball of radius r can be
covered by 2λ balls of radius r

2
. A metric is doubling if its

dimension is O(1). While a low Euclidean dimension implies
a low doubling dimension (Euclidean metrics of dimension
d have doubling dimension O(d) [12]), low doubling dimen-
sion is more general than low Euclidean dimension. For
example, exact nearest neighbor in metric spaces with low
doubling dimension may require Θ(n) computations (this
follows easily from [13]), while for d-dimensional Euclidean

space Clarkson [8] has given an O(n⌈d/2⌉(1+ǫ)) data struc-
ture that answers exact nearest neighbor queries in O(log n)
time (with constant factors in the bounds depending on d
and ǫ, ǫ > 0). By contrast, for approximate nearest neighbor
one can achieve the same results for low doubling dimension
as are possible for low Euclidean dimension.

Krauthgamer and Lee [15] applied navigating nets to the
ANN problem. For a set of points X, a subset Y ⊆ X is
an ǫ-net if it satisfies the following conditions: (i) For every
x, y ∈ Y , the distance between x and y is d(x, y) ≥ ǫ, and (ii)
every point of X is within distance ǫ of some y ∈ Y . These
conditions require that the points of an ǫ-net be spaced out,
yet nevertheless cover all points of X.

A navigating net is composed of levels of ǫ-nets. Consider
the maximum and minimum interpoint distances in X, dmin

and dmax. For all scales r ∈ Γ, where Γ = {2i : ⌊log dmin⌋ ≤
i ≤ ⌈log dmax⌉}, we require that the net level Yr be an r-net
of the lower level Yr/2. (For ease of notation, we set d′

min =

2⌊log dmin⌋ and d′
max = 2⌈log dmax⌉.) The bottom level of the

navigating net, Yd′

min
, contains all points of S. The top level

of the navigating net, Yd′

max
, contains a single point. [15]

showed how to store a navigating net implicitly. They then
created a directed acyclic graph D by adding a directed edge
from each point y ∈ Yr to all points of Yr/2 that are within
distance γr of y (for some appropriate constant γ). Now,
each point in the navigating net may be reached from O(1)
points a level above.

An approximate nearest neighbor search on the navigat-
ing net is accomplished as follows. Beginning at the single
top point and descending to a stopping level specified below,
the algorithm keeps track of all points of the current scale r
that are within distance γr of the query point, and also of
the closest point encountered thus far. This can be done effi-
ciently since (i) the doubling and packing properties guaran-
tee that there are no more than O(1) points of Yr at distance
γr of the query point, and (ii) all pertinent points of Yr/2



(those that are within distance γr/2 of the query point), are
necessarily connected to the pertinent points of Yr. Eventu-
ally, the algorithm either reaches the bottom level (and has
necessarily encountered the nearest neighbor), or reaches a
level Yr′ in which no points are within distance γr′ of the
query point. In the latter event, only (1/ǫ)O(1) more work
is necessary to find an approximate nearest neighbor by de-
scending O(log(1/ǫ)) more levels, as explained in [15].

A core difficulty with this approach is its dependence on
the height (or number of levels) of D. This in turn is deter-
mined by the aspect ratio, or spread, of the points, that is
Φ = dmax/dmin. The height of a navigating net is directly
proportional to log Φ, which is acceptable if Φ =poly(|X|),
but problematic if Φ is asymptotically greater. Both the
query and construction times used in [15] are given in terms
of the aspect ratio – these operations require O(log Φ) time.
(The paper claims a slightly worse bound for insertions and
deletions, but actually O(log Φ) suffices.)

Related work. Beygelzimer et al. [5] showed how to improve
on the space required by [15]. Krauthgamer and Lee [16]
gave an alternate static data structure for ANN under the
assumption of constant doubling dimension, obtaining re-
sults that are independent of the aspect ratio. For constant
doubling dimension, their static data structure uses space
O(n2) and answers queries in O(log2 n) time, while making
O(log n) calls to the distance oracle.

Improving on this result, Har-Peled and Mendel [13] con-
structed a linear space ring–separator structure that pro-
vides an nc-approximate nearest neighbor to the query point
in O(log n) time. While an nc-approximation is very coarse,
it provides enough information to “jump in” to a net-tree
structure at a position that is within O(log n) levels of the
desired approximation (as discussed there). This clever ob-
servation completely circumvents the reliance on aspect ra-
tio. However, the construction of [13] does not support
insertions or deletions into the point set. Using the dy-
namization technique of Bentley and Saxe [4], this structure
may be extended to allow for insertions, thereby producing a
semi-dynamic structure, but then an insertion would require
Θ(log2 n) time. It is not clear how to maintain the struc-
ture of [13] either dynamically or even semi-dynamically in
O(log n) time given the special order that they impose on
points when building their tree structure.

Other related research on nearest neighbor searches has
focused on various assumptions concerning the metric space.
Clarkson [9] made assumptions concerning the probability
distribution from which X and q are drawn, and developed
two randomized data structures for exact nearest neighbor.
However, the query time is super-logarithmic, and the struc-
tures do not support insertion or deletion of points. Karger
and Ruhl [14] introduced the notion of growth-constrained
metrics (elsewhere called the KR-dimension) which is a weaker
notion than that of the doubling dimension. They pre-
sented an O(n log n) space data structure on which a ran-
domized algorithm finds an approximate nearest neighbor
in O(log n) time, and which allows insertions and deletions
in O(log n log log n) time. A survey of proximity searches in
metric space appeared in [7].

Our results. We present a linear size data structure that
supports insertions and deletions in O(log n) time, and finds
a (1 + ǫ)-approximate nearest neighbor in time O(log n) +

(1/ǫ)O(1). These bounds are independent of the aspect ratio.

The main novelty in our solution is to devise a method for
searching on D in O(log n) + (1/ǫ)O(1) time, independent of
the spread. The basic idea is to extract a spanning tree
S of D and to use S to guide the search. In general, the
search will be confined to a constant number of subtrees
of S. At each step, the search identifies a node s, whose
weight splits the weight of the largest of the subtrees by a
constant fraction. If the query point is far from the point
represented by node s, we can rule out all of s’s descendants,
and thereby significantly reduce the number of points under
consideration. Otherwise the query point is close to s, and
we can rule out points far away from s. Ruling out the
points far away from s is the interesting case, for as we shall
see, this results in identifying a new constant-sized set of
subtrees in which the search will continue.

To enable rapid identification of nodes s in S, a centroid
path decomposition of S is maintained, with each centroid
path being stored in a suitable weighted search structure
(we use the biased skip list of [2]). The challenge we face
is to maintain D and the associated spanning tree S under
point insertion and deletion. Note that the construction of
[15] requires creating or updating Θ(log Φ) neighbor lists
following a single insertion, which for large Φ is ω(log n)
neighbor lists. We devise a technique that requires only
O(1) operations on the DAG for a single update.

A straightforward application of our data structure is the
extraction of a well separated pairs decomposition in linear
time. We omit the details in this paper.

We conclude the introduction by contrasting our data
structure with the logarithmic time solution in ℜd due to
Arya et al. [1]. Their solution uses a tree-based hierarchical
partitioning of ℜd and seeks the O(1) leaf regions nearest
the query point by means of a DFS search. Thanks to the
space partitioning, only O(log n) regions need be examined.
In doubling dimension metrics, it is not clear how to build,
or even that there exists, such a hierarchical space parti-
tion. Instead, the notion of friends (nearby regions or balls
of equal size) is used to control the extent of the search.
However, maintaining an unbalanced search tree so that the
subtrees of friends can be effectively searched, while achiev-
ing logarithmic time, appears to need an approach quite
distinct from that of [1].

We demonstrate in Section 2 how to maintain the navi-
gating net and its corresponding DAG D and spanning tree
S. In Section 3 we show how to use D and S to find a near-
est neighbor. In Section 4 we address some issues that arise
when deleting a point, and in Section 5 we discuss how our
structure can be implemented in truly linear space.

2. NAVIGATING NET MAINTENANCE AND
THE SPANNING TREE

Recall that the navigating net utilized in [15] was a collec-
tion of Yr-nets. The Yr points were at minimum distance r
from each other (the packing property), and each Yr/2 point
was contained within a radius of r of some point in Yr (the
covering property). Navigation in the nets was supported by
neighbor lists, where a neighbor list of x ∈ Yr is the set of
all points z ∈ Yr/2 that are distance at most γr away from
x. Note that the neighbor lists form a DAG over the set of
(point, level) pairs. These neighbor lists allowed the search
procedure to descend a single level, while keeping track of
the points relevant to the search.



The navigating net we use is also a collection of Yr-nets
(represented explicitly), but we define a Yr-net as a collec-
tion of balls of radius r, whose centers are some minimum
distance apart. A ball’s volume includes just those locations
strictly inside its circumference. Rather than use values of r
that grow by factors of 2, we have r grow by factors of b. To
emphasize this, we denote the nets as Ybi , where i is as small
as needed. Later, we show that we require b ≥ 5, so we will
set b = 5. We also have a leaf level net Y0 which includes all
the points, and a root level net Y∞ which contains a single
ball.

Each ball x ∈ Ybk is partitioned into five rings, each of

width bk

5
. (The purpose for this will become clear in Sec-

tion 2.1.2.) Each ring includes the locations lying on its
inner circle, but not those locations lying on its outer cir-
cle. The rings are labeled one to five from outermost to
innermost.

Each ball x ∈ Ybk is centered at some point p = c(x);
when convenient, we may refer to x as 〈p, bk〉. Note that a
single point p may be the center of multiple balls, as long as
they are in different levels.

We define d(x, y), the distance between two balls x ∈ Ybk

and y ∈ Ybm , to be the distance between their centers. We
will say that x is in a ring of y if m > k and x’s center is in
that ring. x is within a ring of y if it is in that ring or is in
a different ring that is closer to the center of y. We will say
that y contains the center of x (or contains x, for short) if
m > k and d(x, y) < bm; in addition, if m = k + 1, then y
is a parent of x, and x a child of y. x could have multiple
parents.

Finally, we introduce two relaxations in the definition of
Ybk -nets: (i) We relax the covering property, the condition
that each ball of Ybk (for a non-root level net Ybk) is con-
tained in some ball of Ybk+1 . Instead, we require only that
each ball of Ybk be contained in some higher level ball; that
is, for x ∈ Ybk there exists some y ∈ Ybm (m > k) such that
d(x, y) ≤ bm. Note that this definition allows for jumps,
where a Ybk ball is contained in a much higher level ball,
and in no balls at intermediate levels. y and x are also
called a parent-child pair, but here x will have just one par-
ent. Because we will stipulate that all inserted points have a
corresponding ball in the Y0 level, to achieve linear space it
appears necessary to incorporate jumps into our definition.
Note however, that just as in [15], each ball of Ybk , bk 6= 0,
has a child with the same center, although that child may be
at level Ybk−2 or lower. (ii) We relax the packing property,
so that balls of Ybk must be separated by a distance of at
least bk−1 (rather than bk).

Our search structure is also a DAG with the balls as ver-
tices, and edges given by the parent-child pairs. In addition,
each ball will have pointers to its parents and friends. The
friends of x ∈ Ybk are all the balls of Ybk that are within
distance 2bk of x. (Note that the packing property implies
that a ball has O(1) friends.)

More formally, the navigating net satisfies the following
conditions:

• Y0 (the leaf level) contains n balls, one ball centered
at each of the n points. Y∞ (the root level) contains a
single ball.

• Packing property: For every x, y ∈ Ybk , d(x, y) ≥ bk−1.

• Covering property: With the exception of the root ball,
for every ball x ∈ Ybk there is an m > k such that x is
contained within a ball y ∈ Ybm .

As mentioned before, the third condition allows for jumps.
The existence of a jump implies a degree of separation from
other balls, which is captured by the following invariant:

Invariant 1. If there is a jump from y ∈ Ybm down to
w ∈ Ybk , then the following jump conditions hold:

(i) w and y are centered at the same point, c(w) = c(y).

(ii) Ring 5 of y must be disjoint from rings 2–5 of each ball
of level Ybm or lower which is not a descendant of w.
That is, if z ∈ Ybj , j ≤ m, and z is not a descendant
of w, d(z, y) ≥ 1

5
bm + 4

5
bj.

A jump from y ∈ Ybm down to w ∈ Ybk may be split
by inserting a ball x = 〈c(y), bl〉, m > l > k, that breaks
the jump into two. Note that x obeys the packing property
with respect to any ball z ∈ Ybl , since d(x, z) = d(y, z) ≥
1
5
bm + 4

5
bl ≥ 1

5
bl+1 + 4

5
bl > bl > bl−1.

Next, we describe the close-containment property. We
will show that this property is key to allowing updates in
O(1) time (Theorem 1) and in executing the ANN search
(Lemma 5).

Invariant 2. (Close-containment property) If a ball has
ancestors in some level, then all its rings are strictly con-
tained within the second ring of one of those ancestors. That
is, if x ∈ Ybk has ancestors in Ybm , then x is strictly within
distance 4

5
bm − bk of at least one of them.

In Section 2.1, we describe how to insert points into our
structure. In order to maintain close-containment in the
presence of insertions, we will ensure that if a Ybm ball y
acquires a new distant descendant x, then if not already
present, a ball closer to x than y is added to Ybm , as will be
discussed in Section 2.1.2. In Section 2.1.1, we show how to
maintain Invariant 1.

2.1 Insertion Rules
For the insertion of the first point p0, we create a jump

from 〈p0, Y∞〉 to 〈p0, Y0〉. For the insertion of a subsequent
point p, or rather the insertion of a leaf node s = 〈p, 0〉
representing p, we first split an existing jump (if necessary),
and then insert a new jump from a new ball t down to s.
More precisely, we carry out a containment search (described
in Section 3) to locate the lowest balls that contain s. Call
this set of balls B, and their level Ybm . Let x ∈ B be the
ball closest to s, x = 〈q, bm〉.

Insertion Rule 1. (IR1) s is contained in the fifth ring
of x, or x is the root ball.
(i) x is necessarily the top of a jump (or else its child cen-
tered at c(x) would have been the lowest ball containing s).
Let k be the smallest integer for which d(s, x) < bk−1. Split
this jump by creating a ball w = 〈q, bk〉, making w a child of
x ∈ Ybm (unless k = m, in which case w = x), and assign to
w a child v = 〈q, bk−1〉. v becomes the parent of the bottom
ball of the jump. Clearly, if m > k + 1, this introduces a
jump at a non-leaf level.
(ii) Insert t = 〈p, bk−1〉 as a child of w and parent of s.



Insertion Rule 2. (IR2) s is contained in rings 1–4 of
non-root x.
(i) If x is the bottom of a jump, split the jump by creating a
ball y = 〈q, bm+1〉, the new parent of x.
(ii) Let y be the nearest parent of x at level Ybm+1 . Assign
to y a child t = 〈p, bm〉; t becomes the parent of s.

Note that all balls created by the insertion rules obey the
packing property. As noted after Invariant 1, this is true for
balls created by jump splits, so we need only demonstrate
this for t. For IR1, s was not contained in any balls of Ybk−1

before the jump was split, so that the distance from t to any
of these balls is at least bk−1 > bk−2. With regard to v, k
was chosen such that d(s, x) = d(t, v) ≥ bk−2, so t obeys the
packing property. For IR2, x is the Ybm ball closest to t; s is
contained in rings 1–4 of x, so that d(s, x) = d(t, x) ≥ bm

5
=

bm−1, and t obeys the packing property.
Additional balls may be created by the jump rules of Sec-

tion 2.1.1 and the promotion rules of Section 2.1.2.

2.1.1 Jump Maintenance
We now add three rules that preserve Invariant 1 during

the execution of an insertion or a promotion. These rules
will require jump splits only.

Recall that a jump from y ∈ Ybm down to x ∈ Ybk implies
that any ball z ∈ Ybj , j ≤ m, strictly within distance 1

5
bm +

4
5
bj of x is a descendant of x, and is therefore strictly within

distance 4
5
bk − bj of x. We will also say that y contains a

jump. We use the term ball addition to refer exclusively to
the creation of a ball as a result of either an insertion of
a new jump or a promotion (as discussed in Section 2.1.2),
and not to the creation of a ball as a result of a jump split.

Jump Rule 1. (JR1) If z ∈ Ybm is to be added strictly
within distance 4

5
bm + bm−1 of one of its friends y, and y

contains a jump, then fix the jump by creating a Ybm−1 ball
centered at c(y). The jump fix occurs prior to the addition
of z.

Jump Rule 2. (JR2) If a jump is inserted from y ∈ Ybm

to x ∈ Y0, and y has a friend strictly within distance 4
5
bm +

bm−1, then fix the jump as in JR1.

Jump Rule 3. (JR3) If x ∈ Ybk is at the bottom of a
jump, and z is to be added as a friend of x, then fix the
jump by creating a Ybk+1 ball centered at c(x). The jump fix
occurs prior to the addition of z.

Comment. Note that for insertions, the event that causes
JR3 is already addressed by IR2(i). Thus, JR3 is only
needed for promotions.

2.1.2 Promotions
The insertion rules ensure that several Ybk−1 balls must

be inserted as children of y ∈ Ybk before one of them will
be at distance 4

5
bk − bk−1 or greater from y. The multiple

insertions over which this occurs gives us an opportunity
to promote one of these balls (say x ∈ Ybk−1) to Ybk . x is
promoted by inserting a new higher level ball centered at
c(x). Note that ball x remains in Ybk−1 . The promotion of
x allows the new ball in Ybk to become a parent for balls
that are too far from y.

Such a promotion scheme could result in a difficulty, how-
ever. Suppose we were to decide that a Ybk−1 ball is pro-
moted if it is at distance 4

5
bk−bk−1 or greater from its closest

parent. Let x ∈ Ybk−1 be the first ball which is inserted at
distance at least 4

5
bk − bk−1 from its parent, and which is

subsequently promoted to create ball x′ ∈ Ybk . Now, if x′ is
itself at distance 4

5
bk+1 − bk or greater from its parent, we

will wish to promote x′. Thus, this scheme may result in a
cascading series of promotions that cannot be done in the
allotted time.

A subtler approach is called for. We use the five rings of
the balls to recursively classify balls according to their need
for promotion. Specifically, we define the notions of safe and
supersafe balls. Promotions are used to maintain ball safety.

Definition. Safe and supersafe balls are defined as follows:

• The root ball is supersafe.

• A ball is supersafe if it is in the fifth ring of its parent.

• A ball is supersafe if it is in the fourth ring of its su-
persafe parent.

• A ball is safe if it is in the fourth ring of its safe parent.

• A ball is safe if it is in the third ring of its supersafe
parent.

Loosely speaking, insertions of Ybk−1 balls in the second
ring induce promotions into Ybk , and (earlier) insertions of
Ybk−1 balls in the third ring induce promotions at some
higher level. More precisely, a promotion may occur when
a ball x is inserted at level Ybk−1 as a child of y. When x
is in the second ring of y, x is promoted to level Ybk . When
x is in the third ring of y, there may be a promotion of a
different ball to a level above Ybk ; the ball to be promoted,
if any, is recorded at y, and is called the obligation of y.

The obligation for y ∈ Ybk is instantiated when y is cre-
ated by an insertion or a promotion as follows. Let z ∈ Ybk+1

be the nearest parent of y, if any. If y is in z’s third ring,
then y receives obligation 〈y〉. If y is in z’s fourth ring, then
y’s obligation is the same as z’s obligation; if z does not have
an obligation, y will have no obligation. Similarly, if y is in
the fifth ring of z or y is the root, then y has no obligation.
(Note that if y is safe then it must have an obligation.)

When a promotion of x is about to be performed, we first
check to see if x lies in the fifth ring of one of its parents
(this is possible only if that parent was created subsequent
to the creation of x); if so x has become supersafe, and
no promotion occurs. It follows that a ball created by a
promotion always obeys the packing property.

In terms of causal ordering, we view a promotion as occur-
ring prior to the insertion which necessitates the promotion.
This perspective simplifies the proofs of Section 2.2.

The following property is key to maintaining ball safety.

Property 1. A newly added ball x whose center is in
ring i of its parent can also overlap only rings i ± 1.

To maintain this property, it suffices to assign each ring
width bk−1; that is, b ≥ 5. Accordingly, we have set b = 5.

Lemma 1. All balls are safe or supersafe.

Proof. In turn, we consider balls created by jump splits,
insertions of a jump and promotions.

The new ball added by a jump split is always supersafe,
since its parent has the same center.



We turn to an insertion of a new ball t ∈ Ybk , the top of a
jump down to the leaf level. Assume the lemma held prior
to the insertion. For IR1, t is contained in the fifth ring of w,
and so it is supersafe. For IR2: (i) If t is in the fifth ring of
y, then t is supersafe. (ii) If t is in the fourth ring of y, then
t is supersafe if y is supersafe, and safe if y is safe. (iii) If t
is in the third ring of a supersafe ball y, t will be safe. If t is
in the third ring of a safe ball y, t provokes a promotion of a
different ball at a higher level. But this promotion changes
the whole chain of such ancestors up to and including y to
be supersafe; t will therefore be safe. (iv) If t is in the second
ring of y, then t is promoted and becomes supersafe, since it
has the same center as its parent. (v) If t is in the first ring
of y, then there must be a ball w ∈ Ybk in the second ring of
y. But then w would not be safe or supersafe, contradicting
the assumption that the lemma held before the insertion.

Consider a promotion next, and assume that the lemma
held prior to the promotion. A ball s ∈ Ybk can be promoted
to create s′ ∈ Ybk+1 if s has obligation 〈s〉, or if s is newly
inserted in the second ring of its closest parent y ∈ Ybk+1 .
In either event, there must be a Ybk ball in y’s third ring: If
s possesses obligation 〈s〉, it must be that s is in the third
ring of y. If s is in the second ring, then the insertion rules
imply that there must be a ball w ∈ Ybk in the third ring of
y. Since y has a ball in its third ring, y must be supersafe.
Now note that d(y, s′) = d(y, s) < bk+1, and also that y
must have a parent z ∈ Ybk+2 . (If y was at the bottom of
a jump, then JR3 was applied before the promotion of s,
giving y a parent in Ybk+2 .) If y is supersafe by being in
the fourth ring of its supersafe parent z, then s′ is either in
the fourth or third ring of z, and is respectively supersafe or
safe. If y is supersafe by having the same center as its safe
parent z, then s′ is in the fifth ring of z and is supersafe. 2

2.2 Correctness of Invariants
We show that the rules for insertions, jumps and promo-

tions maintain both invariants.

Lemma 2. Invariant 2 holds.

Proof. Lemma 1 demonstrates that all balls are safe or
supersafe, hence every ball lies in the fifth, fourth or third
ring of its parent. It follows that the distance from a ball in
level Ybk to its closest ancestor in Ybm is strictly less than
3
5
bm + 3

5
bm−1 + . . . + 3

5
bk+1 = 3

4
bm − 3

4
bk = 4

5
bm − bk −

1
20

bm + 1
4
bk ≤ 4

5
bm − bk. 2

Before proving that Invariant 1 holds, we enumerate the
operations in the order that they may occur when a point is
added to the point set; these involve jump splits and addi-
tion of balls. Recall that we view a promotion as preceding
the insertion that necessitates it, and also that JR1 and JR3
are applied before the insertion or promotion that violate the
relevant jumps. The order is: (i) JR1 and JR3 are applied
prior to a promotion that violates a neighboring jump. (ii)
A promotion creates a new ball. (iii) JR1 is applied prior to
an insertion of a jump that violates a neighboring jump. (iv)
Either IR1 or IR2 is applied; these consist of jump splits and
the insertion of new jump. (v) JR2 is applied to the newly
inserted jump. Of course, for any given insertion only some
of these may occur.

We now show that the jump rules preserve Invariant 1,
and also that a single jump fix suffices for a violated jump.

We must first prove that a ball created by a jump split (and
therefore, by a jump fix) does not violate another jump close
by, so that the creation of such a ball does not necessitate a
further jump fix.

Lemma 3. Let J and J ′ be two jumps from y ∈ Ybm down
to w ∈ Ybk and from y′ ∈ Ybm′ down to w′ ∈ Ybk′ , respec-
tively. Suppose J is split by adding x ∈ Ybl , k < l < m,
with the same center as y (and w), possibly creating jumps
Jt from y to x and Jb from x to w. Then Jt, Jb and J ′ obey
Invariant 1.

Proof. If y is a descendant of w′ or if y′ is a descendant
of w, then the lemma is clear. Otherwise, we consider each
jump separately.

Jt obeys Invariant 1: (i) y and x are centered at the same
point. (ii) Before the jump was split, any ball z ∈ Ybj ,

j ≤ m, with d(z, w) < bm

5
+ 4

5
bj was a descendant of w. As

x is the parent of w, it follows that any ball z ∈ Ybj , j ≤ m,
with d(z, x) < bm

5
+ 4

5
bj is a descendant of x.

Jb obeys Invariant 1: (i) w and x are centered at the same
point. (ii) Before the jump was split, any ball z ∈ Ybj , j ≤

l < m with d(z, w) < bm

5
+ 4

5
bj was a descendant of w. After

the split, any ball z ∈ Ybj , j ≤ l, with d(z, x) < bl

5
+ 4

5
bj

remains a descendant of w.
J ′ obeys Invariant 1: (i) w′ and y′ are centered at the

same point. (ii) We note that before J was split, no balls
violated Invariant 1 with respect to J ′, so we need only prove
that x does not violate the jump at J ′. We assume then that
l ≤ m′. If m′ ≥ m, the jump at y′ implies that d(y′, y) =

d(y′, x) ≥ bm′

5
+ 4

5
bm > bm′

5
+ 4

5
bl. If m′ < m, then the jump

at y implies that d(y′, y) = d(y′, x) ≥ bm

5
+ 4

5
bm′

> bm′

5
+ 4

5
bl.

2

Thus, a jump split does not violate a neighboring jump.
Further, jump fixes are applied only to a newly inserted
jump, or a jump that is directly violated by a newly added
ball; jump fixes do not cascade. We now prove that In-
variant 1 holds following a promotion or insertion. Recall
first that a newly added ball x ∈ Ybk must have a parent
in Ybk+1 : For insertions, this is apparent from the insertion
rules. For promotions, this follows from the fact that a ball
b may be promoted only if it is within the second ring of its
parent; by close-containment, the level Ybk ball created by
the promotion will be contained in the grandparent of b at
level Ybk+1 . (JR3 ensures that the grandparent must exist.)

Lemma 4. The jump rules preserve Invariant 1 following
a promotion or insertion. Further, a jump whose top is in
Ybm is only violated by balls in Ybm , and any violated jump
requires a single jump fix.

Proof. Let J be a preexisting jump from y ∈ Ybm to x ∈
Ybk , and let y′ ∈ Ybm′ be a new ball added either because of
a promotion, or because of an insertion of a jump J ′ from
y′ down to x′ ∈ Y0. We show that the jump rules preserve
Invariant 1 with respect to J . We consider three cases:

Case 1. m′ > m. y′ does not violate J , since it is at a
higher level than y. For x′, note that d(y, y′) = d(y, x′) ≥

bm > bm

5
(or else y′ could not have been inserted at level

Ybm′ ), so that x′ does not violate J .

Case 2. m′ = m. If d(y, y′) ≥ 4
5
bm+ bm

5
= bm, then neither

y′ or x′ violate J . Otherwise, jumps J and J ′ are fixed by



JR1 and JR2, respectively. Call the new jumps Jf and J ′
f .

The packing property implies that d(y, y′) ≥ bm−1 = bm

5
, so

that Jf is not violated by y′ or its descendants.
Case 3. m′ < m. Since z′, the parent of y′, did not violate

J , the distance from z′ to y must be at least bm

5
+ 4

5
bm′+1. By

close-containment, d(z′, x′) < 4
5
bm′+1 − bm′

; thus d(y, y′) =

d(y, x′) ≥ d(y, z′)−d(z′, x′) > bm

5
+ 4

5
bm′+1− 4

5
bm′+1+bm′

=
bm

5
+ bm′

> bm

5
+ 4

5
bm′

.

We now show that the jump rules hold with respect to the
new jump J ′. Note that if we show that a ball z ∈ Ybk , k ≤

m′, does not violate J ′ (so that d(z, y′) ≥ bm′

5
+ 4

5
bk) then it

follows from close-containment that none of its children at

level Ybl , l < k, violate J ′: bm′

5
+ 4

5
bk− 4

5
bk +bl = bm′

5
+bl >

bm′

5
+ 4

5
bl. We consider two cases with respect to J ′:

Case 1. There exists a ball z ∈ Ybm′ .

If d(z, y′) ≥ 4
5
bm′

+ bm′

5
= bm′

, then z does not violate J ′,
and therefore none of its descendants violate J ′.

If d(z, y′) < bm′

, z violates J ′, and J ′ is fixed by JR2;
call the resulting jump J ′

f . We show that J ′
f is not violated.

Note that the distance from y′ to any ball v ∈ Ybm′
−1 is at

least bm′

5
(or else y′ could not have been inserted in Ybm′ ),

and so v and its descendants do not violate J ′
f . If there is

a jump from z down to w ∈ Ybl , l < m′ − 1, we recall that

d(y′, z) ≥ bm′−1 = bm′

5
, and so w and its descendants do

not violate J ′
f .

Case 2. There exists a jump J from y ∈ Ybm , m > m′

down to x ∈ Ybk , k < m′. The jump at y implies that
the distance from y to the parent of y′, say z′, is at least
bm

5
+ 4

5
bm′+1. By close-containment, d(z′, y′) < 4

5
bm′+1 −

bm′

; thus d(x, y′) = d(y, y′) ≥ d(y, z′) − d(z′, y′) > bm

5
+

4
5
bm′+1 − 4

5
bm′+1 + bm′

= bm

5
+ bm′

> bm′

5
+ 4

5
bk, so x and

its descendants do not violate J ′. 2

We can now prove the following theorem.

Theorem 1. The insertion, promotion and jump rules
require O(1) operations on D for a single update.

Proof. It is clear that a single application of an insertion,
promotion, or jump rule requires O(1) operations on D.

Concerning the application of jump rules following an ad-
dition of a ball or jump at level Ybm (by an insertion or
promotion): It follows from Invariant 1 that JR3 is applied
only once. Lemma 4 demonstrates that JR2 is applied at
most once to the inserted jump, and JR1 is applied at most
once to jumps whose tops are in Ybm and that are violated
by the newly added ball. By the packing property, there
exist at most O(1) such jumps.

All that remains is to reiterate that Lemma 3 shows that
jump splits do not violate neighboring jumps. 2

Finally, we note that the close-containment property al-
lows links to parents, children and friends to be maintained.
Consider point x ∈ Ybk inserted as a child of its closest par-
ent y ∈ Ybk+1 . All parents of x can be located, since they are
strictly within distance 2bm of y, and so they are friends of y.
Similarly, all friends of x are children of y: If there is a jump
from y down to x, then there are no balls of level Ybk strictly
within distance bm

5
+ 4

5
bk > 2bk of y and x, and so x has no

friends. If x is not the bottom of a jump, then note that by
close-containment the distance from y to one of x’s friends
is strictly less than 4

5
bk+1 − bk + 2bk = 4

5
bk+1 + bk = bk+1,

so that y is a parent of this friend.

2.3 Updating the Spanning Tree
The upkeep of D’s spanning tree S is straightforward.

Every ball of D is represented in S. If a ball x ∈ Ybl is
created due to the splitting of a jump from y ∈ Ybm down
to w ∈ Ybk , then a corresponding ball x ∈ S is created as a
child of the ball in S corresponding to y, and a parent of the
ball corresponding to w. If x ∈ D is created as a result of a
promotion or insertion of a jump, then x ∈ S is created as
a child of the ball in S corresponding to the closest parent
of x in D.

3. SEARCH ALGORITHM
In this section, we describe how to execute an O(log n)-

time containment search on S. A containment search, given
a point q, seeks the closest lowest level ball x in the DAG
that contains q. Given x, we defer to the algorithm of [15] to

find a (1 + ǫ) nearest neighbor to q in (1/ǫ)O(1) more steps.
To carry out the containment search, we need the DAG

D of Section 2, which records the child lists and pointers
to each ball’s friends. We also require a spanning tree S of
D. In addition, we need to maintain a centroid path decom-
position of S as well as store each centroid path of S in a
weighted search structure, as described in Section 3.1. For
our purposes, we define the centroid path of a tree to be the
path starting at the root, which at each node v branches
to v’s ‘largest’ child, with ties broken arbitrarily; s(v), the
size of a node, is simply the number of nodes in the subtree
rooted at that node. We also stipulate that each centroid
path has nodes with size 2i < s(v) ≤ 2i+1 for appropriate i.
In a centroid path decomposition, we recursively decompose
each off-path subtree of the centroid path.

Suppose for the moment that D had a well-separated
property, which means that any ball of Ybk had no friends.
Then we could easily execute a containment search for point
q on D in O(log n) time. The search begins at the root of
S, and is defined throughout by s, the current node of inter-
est whose ball contains q, and by the centroid path Ci that
contains s. The search only considers the descendants of s.

The task is to find r, the bottommost node on Ci contain-
ing q. The search first checks if the bottom node on Ci, say
sb, contains q. If it does, then the search tests each child of
sb to see if any of them contain q. If so, the containing node
is the new s, and the search proceeds on its centroid path
Cj . If none of them contain q, the search terminates at sb.

If sb does not contain q, then r is located by means of
a weighted binary search driven by the search structure for
the centroid path of S. At each step, the binary search tests
consecutive node s1, s2 ∈ Ci, where s1 is the parent of s2; if
s1 contains q but s2 does not, then r = s1. Otherwise the
search continues in the appropriate part of Ci (everything
strictly above s1, or everything strictly below). A node’s
weight for the binary search is given by the sum of the node
sizes of its off-path subtrees, plus 1 for the node itself. Hav-
ing found r, the search tests each off-path child of r to see
if any of them contain q. If so, the containing node is the
new s. If not, the search terminates at r.

This algorithm runs in O(log n) time. For when a child
of r is the next node of interest, as we show in Section 3.1,



the centroid path structure will have used O(log W
w

) steps
to remove W − w nodes from consideration (where W is
the number of nodes in r’s centroid path plus the combined
weight of the off-path subtrees rooted at these nodes, and w
is the weight of the off-path subtrees rooted at r). If r was
the bottom node of its centroid path, then the search will
have eliminated W −w nodes from consideration in a single
step.

The difficulty in using this search procedure for D is that
D is not well-separated. If we find that q is not contained
in r we may indeed eliminate r from contention, as close-
containment ensures that none of the descendants of r con-
tain q; but if we find that q is contained in r, we cannot elim-
inate r’s friends from consideration. This problem would
appear to break the logarithmic search, but can be evaded
by noting that in the navigating net search, we needed to
search no more than O(1) points at each level. Translated
onto the search of S, this implies that only O(1) subtrees
need be retained.

More formally, let a search be defined by a set V of nodes
of interest, which are all friends of one node vh ∈ V . For
each node vi ∈ V , record the centroid path Ci of S in which
it is found, and the current portion of Ci being searched.
Let C be the set of these centroid paths.

The search begins with the root as the only member of V .
At every step, the search takes the path Ci whose remaining
weight is largest, and as in the ideal well-separated case
tests the bottom node of Ci and then consecutive nodes
of Ci. Loosely speaking, one step of the binary search on
Ci reduces the weight of the current portion of Ci by a
constant fraction. (A more precise statement is found in
Lemma 6 below.) When, for some i, a node ri is found
which contains q, the search from ri continues as follows.
All off-path children of ri are tested to determine if they
contain q. Let s be a child of ri containing q, if any. Then s
and its friends form the new set of nodes of interest. If there
is no such node s, ri’s q-containing friends form the new set
of q-containing nodes of interest. If this set is empty, the
search stops at ri.

Lemma 5 below implies that the new set of the nodes
of interest are descendants of the surviving portions of the
paths in C. It follows that the centroid path Ci containing
one of these nodes is either the same as a Cj ∈ C, and so
for the purposes of the search its weight is the same as the
remaining weight of Cj , or it is a descendant of some path
Cj ∈ C, in which case its weight is less than the weight
of the remaining portion of Ci. Lemma 6 implies that if it
took d steps to find the new nodes of interest, the weight of
the heaviest path is reduced by a factor of at least 2Θ(d). It
follows that:

Theorem 2. The above search procedure on S terminates
in O(log n) time.

It is left to show that taking the friends of ri as the
nodes of interest suffices. To this end, we have the following
lemma.

Lemma 5. If the query point q is contained in a ball y ∈
Ybm , then any lower level ball v ∈ Ybk that contains q is a
descendant of y or its friends.

Proof. Note that as y and v both contain q, d(y, v) ≤
bm + bk.

We first argue that v must have an ancestor in Ybm , with
proof by contradiction. Suppose that among the ancestors
of v there is a jump from z ∈ Ybp (p ≥ m + 1) to x ∈ Ybl

(l ≤ m − 1); note that c(z) = c(x). By close-containment,
we have that d(v, x) = d(v, z) < 4

5
bl − bk. It follows that

d(y, z) ≤ d(y, v)+ d(v, z) < bm + bk + 4
5
bl − bk = bm + 4

5
bl <

1
5
bp + 4

5
bm; thus y violates the jump down from z.

It follows that v has an ancestor w ∈ Ybm . If w is not y,
we show that w and y are friends, that is d(w, y) ≤ 2bm; for
by close-containment, d(v,w) < 4

5
bm − bk, so that d(y, w) ≤

d(y, v) + d(v, w) ≤ bm + bk + 4
5
bm − bk = 9

5
bm < 2bm. 2

3.1 Centroid Path Updates
S will change, but only locally, as insertions to D occur.

Specifically, S may gain leaves or internal nodes. The effect
of these changes on the centroid paths is limited.

A new node of weight one may be inserted in a path, a
node on a path may have its weight increase by 1, and a
node may leave the top of one path and join the bottom of
another path one level above. We use a modified biased skip
list [2] to store a centroid path and support these operations
as follows. Left to right order in the skip list will correspond
to bottom to top order in the centroid path.

Lemma 6. The modified biased skip list stores an ordered
set S and supports the operations search, reweigh, insert,
and delete with running times specified in terms of the fol-
lowing parameters. Wb and Wa are the total weights of S
before and after the operation, and W = max{Wa, Wb}. The
cost of a search for an item of weight w is O(log W

w
), the cost

of reweighting an item from wa to wb is O(log W
wm

) (where

wm = min{wa, wb}), the cost of inserting or deleting an item
of weight 1 is O(log W ), and the cost of adding or removing
an item of weight w at either end is O(log w).

In Section 3.2 we review the biased skip list and describe
the modifications needed to support the end updates.

Lemma 7. The reweightings due to a node insertion in S
take O(log n) time.

After removing a node of weight w from the top of a cen-
troid path C, there will be at least w insertions into the
subtree rooted at C’s head before another node is removed
from its head. Thus we can afford Θ(w) steps to handle the
node transfers, while Θ(log w) suffices. Note that an update
taking O(log w) time will be performed over the next log w
insertions to the relevant subtree of S.

The one concern is to ensure that the search time is not
affected when the node transfer is proceeding. But this
presents no real difficulty. We can, for example, keep the
node “between” paths while the updates to the centroid
paths are being computed. The key point is to ensure that a
search on a centroid path of weight W which terminates at
a node of weight w performs O(log W

w
+ 1) queries. But the

“between” path nodes induce at most 2 more queries which
could be performed first, without affecting the asymptotic
running time.

Comment. An attempt to use a topology tree [11] for our
construction encounters two obstacles in the execution of
the search: (i) The transfer to friends. This can be solved
by using the (very intricate) dynamic lca query structure
of Cole and Hariharan [10]. (ii) Determining which balls



have real descendants (see Section 4); it is not clear if this
difficulty can be solved.

3.2 Modified Biased Skip Lists
We augment the biased skip lists of Bagchi et al. [2] to al-

low fast insertions and deletions at either end (end updates),
in addition to the fast searches and reweightings described
in [2]. We perform an end update by a weight w item in
O(log w) time. As in Lemma 6, let Wb and Wa be the total
weights of the items before and after an update, and W =
max{Wa, Wb}. As in [2], a fast search takes time O(log W

w
),

where w is the weight of the sought item, and a reweight-
ing takes time O(log W

wm
), where wa and wb are the old

and new weights of the item being reweighted, and wm =
min{wa, wb}.

Recall that in a biased skip list the items are kept in sorted
order in a doubly linked list. Each item e has an integer
height h(e) with h(e) ≥ log w(e), where w(e) is e’s weight.
We will say that e oversize if h(e) > ⌈log w(e)⌉. Further,
for each height h, items of height at least h are kept in
sorted order in a doubly linked list, call the h-list. The
skip list is parameterized by two integer constants a, b with
1 < a ≤ ⌊b/2⌋.

Let hmax denote the maximum height of any item. The
(a, b)-skip list obeys the following invariants.

Invariant 3. For all h, 0 ≤ h ≤ hmax, there are at most
b consecutive items of height exactly h in the h-list.

Invariant 4. For each oversize item e and each h such
that ⌈log w(e)⌉ < h ≤ h(e) there are at least a items of height
exactly h − 1 between e and its h-list neighbor, if any. This
sequence is called an oversize (h − 1)-sequence.

Note that if the leftmost item of height h is not oversize,
there is no lower bound on the length of the leftmost (h−1)-
sequence; a similar remark applies to the right end.

Definition 1. The sequence of consecutive items of height
h in the h-list starting at the leftmost item, if non-empty, is
called the left end h-sequence. The right end h-sequence is
defined analogously.

The operations search, insert, delete, reweight are all de-
scribed in [2]. The operation insert(e) entails adding e at
the correct location and then restoring Invariants 3 and 4
as needed by a sequence of “splits” and “joins.” The delete
and reweigh operations are analogous. We refer the reader
to [2] for details.

Loosely speaking, [2] achieve time O(log W
w

) for an insert
or delete. But we want time O(log w) for an end update. To
enable this we weaken Invariants 3 and 4 as follows.

Invariant 5. The sequence of consecutive height h items
in the h-list starting at the leftmost item, if any, contains at
most b + 1 items, and similarly for the right end.

Invariant 6. The oversize h-sequence of consecutive height
h items in the h-list starting at the leftmost item, if any,
contains at least a−1 items, and similarly for the right end.

Before discussing the end updates, we outline the splitting
and joining rules. A split takes an h-sequence of b + 1 or
b + 2 items and creates sequences of ⌊b/2⌋ and ⌈b/2⌉, or of
⌊(b + 1)/2⌋ and ⌈(b + 1)/2⌉ items, respectively. A join takes

h-sequences of a − 1 or a − 2 items and of a + c items and
produces an h-sequence of 2a+c or 2a+c−1 items (capturing
the separating item). A join immediately followed by a split
takes the same pair as in the previous sentence and produces
h-sequences of ⌊(2a+c−2)/2⌋ and ⌈(2a+c−2)/2⌉ items, or
of ⌊(2a + c− 1)/2⌋ and ⌈(2a + c− 1)/2⌉ items, respectively.
We need that the sizes of the new h-sequences lie in the
range [a + 1, b − 1]. Choosing a = 3, b = 10 works.

We describe the update procedure for left end sequences;
the procedure for right end sequences is entirely analogous.
But first we need to specify some more constraints observed
by the end h-sequences. A left end h-sequence σ can occupy
one of five states: -2,-1,0,1,2. It is in state -2 if σ is oversize
and holds a − 1 items, in state -1 if it is oversize and holds
a items, in state 1 if it holds b items, in state 2 if it holds
b + 1 items, and in state 0 otherwise.

We keep two stacks, one for each end of the list. The left
end stack stores pointers to the left end h-sequences in state
±2 with the stack order from bottom to top corresponding to
decreasing index order. The right end stacks are organized
analogously.

When an item is added to the end h-sequence in state 2,
the sequence splits, putting the end h-sequence in state 0
and adding one item to the end (h + 1)-sequence. Adding
an item to a state c end sequence, c < 2, creates a state
c + 1 end sequence, unless c = 0, when the updated end
sequence may also be a state 0 sequence. Removing an item
from the end h-sequence in state -2 is a little more delicate.
Note that the sequence is immediately followed on the right
by an oversize item e of height h + 1. e’s height is reduced
to h. The two leftmost h-sequences are then joined and if
need be immediately split; in the former case this creates
a state 0 end h-sequence and reduces the index of the end
(h+1)-sequence, if any, by 1 or if it was in state 0 may leave
its index unchanged; if there is a split the result is a state 0
end h-sequence and one more item in the left end (h + 1)-
sequence which therefore returns to its previous state.

At the ends of the skip list, the ranks of successive h-
sequences are necessarily strictly increasing, but may not
include intermediate indices. We refer to the indices which
are not present as missing.

The following state distribution invariant ensures that
there is no need for a cascading series of joins or splits when
doing updates.

Invariant 7. (i) Consecutive state 2 sequences on the
stack are separated by at least one c state sequence,
c ≤ 0, which can be a missing empty sequence.

(ii) The state 2 sequence with the lowest index is preceded
by a possibly missing state c sequence, c ≤ 0, of yet
lower index.

Analogous rules apply to state -2 sequences, except that
missing sequences are not included.

To insert an item of weight w at the left end, clear all
h-sequences in states 2 and -2 for h ≤ ⌈log w⌉ plus one more
from the left end stack by performing appropriate joins and
splits, and then add w with height ⌈log w⌉ to the left end of
the skip list.

To delete the rightmost item, remove the bottom sequence
on the right end stack, if it is in state -2, by splits and joins,
and then remove the rightmost item. If this creates a state
-2 sequence, then fix it by a join (and if need be by a follow
up split).



Lemma 8. The procedure maintains Invariants 3 – 7.

Proof. We begin by considering the effect of an insertion.
Consider the states of the left end h-sequences in increasing
index order, including missing (empty) h-sequences. (For
simplicity, instead of having state values c ≤ 0, we simply
show the value zero, but it is not hard to see the argu-
ment continues to hold.) Such a state series has the form
. . . 01 . . . 1201 . . . 12 or . . . 01 . . . 121 . . . 101 . . . 12. The inser-
tion procedure repeatedly removes the leftmost 2 state, cre-
ating a new series of the form . . . 01 . . . 1011 . . . 12 or . . . 01 . . .
1021 . . . 101 . . . 12; the new series continues to satisfy Invari-
ant 7. The final step of the insertion is to add the new
item. The last state 2 sequence σ to be split, if any, had
index greater than that of the inserted item. σ, if split, was
replaced by a state 0 sequence σ′. As the newly inserted
item has lower index than state 0 σ′, Invariant 7(i) is main-
tained. Maintaining Invariant 7(ii) is a concern only if the
newly inserted item creates a state 2 sequence τ , necessar-
ily of lowest index; in this event, splitting τ maintains both
Invariant 7(i) and (ii).

Analogous arguments apply for state -2. 2

Comment. We conjecture that essentially this construction
can be applied to the biased search trees of Bent et al. [3]

The next issue to mention is what happens when a reweight-
ing or non-end update performs a split or join on an end se-
quence. This is performed as usual, with the corresponding
sequence being removed from the stack. Invariant 7 contin-
ues to hold, as in the proof of Lemma 8.

Theorem 3. The modified biased skip list structure stores
a set of weighted ordered items supporting searches in O(log W

w
)

time, reweightings in O(log W
wm

) time, and end updates in

O(log w) time.

4. DELETIONS
When a point is deleted, its corresponding leaf ball in Y0 is

marked, but no other changes are made to D. This scheme
results in two issues that need to be addressed: (i) After
multiple deletions, there may be b balls in the DAG but o(b)
points, and (ii) the containment search may return a ball
that is not the ancestor of a real point. The first concern
is addressed by rebuilding the data structure in the back-
ground. (It suffices, if D stores n points including deleted
points, to start rebuilding after n

3
deletions, and to complete

the rebuilding over the next n
6

insertions and deletions; i.e.
for each update, perform 7 updates on the background struc-
ture. D will then contain at least n

2
points including at most

n
6

deleted points.)
To address the second problem, we devise a scheme for

returning only balls which are ancestors of real points. For
each centroid path, we keep track of whether its top point
has any real descendants; if so, we also record if there are
real descendants in the subtrees of the bottommost node of
the current centroid path, and we record which (if any) of
the path’s vertices have real points in their off-path sub-
trees. Call these vertices real vertices. For each centroid
path, the real vertices are kept in a standard balanced tree.
Note that the leftmost node of this balanced tree stores the
bottommost real vertex of the centroid path.

Note that if a path loses some (but not all) of its real
descendants, then each ancestral path continues to have the

same real vertices, and therefore its balanced tree remains
unchanged. Thus, the effect of deleting a point is to reduce a
(possibly empty) series of paths from having one real vertex
to having none, and for the next path up to decrease its
number of real vertices to some nonzero number. All paths
further up are unaffected. The cost of the updates to the
associated balanced trees is O(1) for each of O(log n) paths
in the series, and O(log n) for the topmost path, for a total
of O(log n).

A containment search for insertions proceeds as before,
irrespective of which vertices are ancestors of real points.
For a containment search for an ANN search, we wish to
return only balls that are ancestors of real points. To this
end, when the search algorithm considers a centroid path, we
seek a ball on this path that has real descendants in addition
to containing the query point. When the search defers to
the algorithm of [15], we again only consider balls with real
descendants. We can determine in O(1) time whether a
ball has real descendants, by locating its centroid path and
the lowest node of that path that contains real descendants,
and such a real descendant can be identified in O(1) time
by keeping a pointer to it at the top of the centroid path. It
is easy to maintain this pointer as updates occur.

5. ACHIEVING TRULY LINEAR SIZE.
In this section, we discuss how our structure can be imple-

mented in space truly linear in the number of points. That
is, we show how to construct a search structure whose size
is O(n), where the notation does not hide constants that
depend on the doubling dimension. (The notation does hide
the cost of storing a point.) In the following discussion, by
a ‘constant’ we mean a value independent of the doubling
dimension.

We first focus on the DAG of Section 2. We prove that the
aforementioned rules for insertions, promotions, and jump
fixes already ensure that the number of balls in the DAG
is truly linear. We then reduce the number of friends lists
that need to be maintained, while changing the search time
by only an additive factor.

5.1 Linear Number of Balls in the DAG
In this section we demonstrate that the rules for the con-

struction of the DAG already guarantee that D is of truly
linear size.

Recall that the insertion and promotion rules require a
constant number of operations; hence, a newly added point
adds only a constant number of balls in the DAG due to the
insertion or promotion rules. Likewise, a jump fix requires
the addition of a single ball, however a ball addition may vi-
olate multiple neighboring jumps, and necessitate multiple
jump fixes; unfortunately, the resulting bound on the num-
ber of balls created will depend on the doubling dimension.
Therefore, it is necessary and sufficient to demonstrate that
although jump fixes may cause multiple balls to be added to
the DAG after a single point insertion, the total number of
balls in the DAG remains truly linear. We shall accomplish
this with a simple charging argument.

Before we present the charging argument, note that by
Lemma 4 a newly added ball x ∈ Ybm only violates jumps
whose tops are in Ybm . Suppose that a newly added ball
x violated multiple such jumps; let J be the set of these
jumps, and let B be the set of the tops of these jumps, with
yi ∈ B being the top of jump Ji ∈ J . Since x violates each



jump of J , we have that d(x, yi) < bm and d(yi, yj) < 2bm

for all yi, yj ∈ B. We can prove the following lemma:

Lemma 9. Suppose a ball yi ∈ B has the same center as
some ball v ∈ Ybm+r , for r ≥ 2. Then no other ball of B has
the same center as any ball w ∈ Ybm+q , for q ≥ 2.

Proof. First note that the promotion and jump split rules
ensure that v is an ancestor of yi. Now, suppose by con-
tradiction that yi has such an ancestor v and some yj has
such an ancestor w. If q = r, then we have that d(v, w) =

d(yi, yj) < 2bm < bm+r

5
, and the packing property is vio-

lated, which is a contradiction. Otherwise, r 6= q; we as-
sume without loss of generality that r > q, and that there
is a jump from v down to Ybm+p , p < q. Since d(v, w) =
d(yi, yj) < 2bm = 2

5
bm+1 < 1

5
bm+r + 4

5
bm+q , the jump is

violated, which is a contradiction. It follows that at most
one ball of B can have an ancestor in Ybm+r , for r ≥ 2. 2

We now present the charging argument. Let yj ∈ B be the
only ball with an ancestor in Ybm+r , s ≥ 2, if any. Charge
each point pi = c(yi), i 6= j for the jump fix of Ji ∈ J , but
charge the jump fix of Jj to the newly added ball that led
to the jump fix.

Lemma 10. Each point can be charged for only a constant
number of jump fixes.

Proof. When a point is inserted, a leaf ball s ∈ Y0 repre-
senting the new point is added to the DAG. The insertion
rules provide that along with a new jump from t ∈ Ybm down
to s, a constant number of balls may be inserted into the
DAG. Each one of these balls can violate multiple jumps,
but the charging rules stipulate that for each ball b, c(s)
may be charged for only one violated jump (namely, the
jump whose top has an ancestor at least two levels above b).
Hence, when s is inserted, c(s) is only charged for a constant
number of jump fixes.

Subsequent to the insertion of s, the jump from t to
s may be violated by further point insertions. However,
c(s) can only be charged for the creation of 〈c(s), Ybm−1〉
and 〈c(s), Ybm−2〉. Any further fixes to this jump create
lower balls which are charged to the newly inserted violat-
ing points. 2

5.2 Efficient Storage of Friends Lists
Although we have shown that the number of balls in the

DAG is truly linear, we have stipulated that each ball store
a list of its friends, and in general this cannot be done if one
is allotted only truly linear space. To this end, we relax the
condition that each ball store its friends. Instead, only some
balls will store all their friends.

Suppose that we knew λ, the doubling dimension of the
space. We know then the maximum number of friends that

any ball may possess; this quantity is 2O(λ), or 2λ′

for brevity.

If we keep friends lists in only n/2λ′

balls of the DAG, then
the resulting structure uses truly linear space. Since there
are O(n/2λ) balls at height λ or greater in the modified bi-
ased skip list, it suffices to allow only these balls to store
friends lists.

As we do not know λ′, instead we limit the length of a
ball’s friends list according to its height in the skip list; a
ball at height 2i or 2i + 1 will be allowed to store a list of
length at most 2i. Any ball that has more friends than can

fit in its list is marked as incomplete. Again, this uses truly
linear space.

The search proceeds as before, until we reach a node which
is marked incomplete. In this scenario, we backtrack in the
biased skip list until we reach a level at which all the nodes
being examined store complete friends lists; that is, at most
up to height 2λ′. We then proceed with the containment
search in a “brute force” manner in each subtree of interest,
as in [15]. The search time increases by an additive term of

2O(λ). We conclude that:

Theorem 4. The data structure may be implemented to
require only truly linear space.
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