
Static Assertion Checking of Production Software
with Angelic Verification

Shaobo He
University of Utah

Shuvendu K. Lahiri
Microsoft Research

Akash Lal
Microsoft Research

Zvonimir Rakamaric
University of Utah

Abstract
The ability to statically detect violations of assertions can
add great value to developers. However, in spite of decades
of progress in program verification, static assertion checking
is far from being cost-effective for production software. The
two main obstacles to finding high-quality defects are (a)
false alarms due to under-constrained environment, and (b)
finding violations to deeply nested procedures.
In this talk, we will describe our experience with the an-

gelic verification (AV) tool for statically finding assertion vio-
lations in real-world software. The basic idea of AV is to pair
an interprocedural assertion verifier with a framework for
automatic inference of likely specifications on unknown val-
ues from the environment. We will summarize the approach,
and will focus on design choices required to find high-quality
violations of memory-safety violations with low false alarms.
We discuss some results on Microsoft codebases and open
source software, and challenges ahead.
ACM Reference Format:
Shaobo He, Shuvendu K. Lahiri, Akash Lal, and Zvonimir Raka-
maric. 2017. Static Assertion Checking of Production Software with
Angelic Verification. In Proceedings of ACM Conference, Washington,
DC, USA, July 2017 (Conference’17), 2 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Assertions provide amechanism for specifying the absence of
a large-class of runtime errors (such as absence of null deref-
erence, or out-of-bounds access) and enforcing program-
specific invariants. Such assertions can be either automat-
ically instrumented or written explicitly by the developer.
These assertions can either be checked at runtime or can be
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

statically discharged. Statically finding assertion violations
can provide great value to developers to find and fix bugs
before deployment without the need for expensive testing
or incurring the runtime overhead in production.

However, statically checking assertions on real-world pro-
grams is far from cost-effective to be deployed as part of a
development cycle. First, since most static assertion checkers
assume a closed program, a programmer has to manually con-
strain the environment with specifications, or create a driver
(to restrict the input states) and stubs (for external methods)
for any open program. In the absence of such an upfront
effort, static checkers (that are often based on satisfiability
modulo theories (SMT) solvers) report numerous dumb false
alarms due to the unconstrained environment. Second, such
assertion checkers do not scale to large programs when as-
sertions are present in deeply nested procedures, since the
checker starts analysis from the entry-point of the module.
Note that these problems persist even when the checker sac-
rifices soundness by performing bounded unrolling of loops
and recursion.

In this talk, wewill present the angelic verification project [6]
for addressing this issue. We summarize the approach in Sec-
tion 2, and discuss some applications in practice in Section 3.

2 Angelic Verification
Angelic verification [6] (AV) is a technique for leveraging au-
tomatic static assertion checkers for finding high-confidence
defects in production software. The technique pairs a precise
assertion checker AC (that can find interprocedural coun-
terexamples of assertion violation in closed programs) with
the inference of angelic specifications on the environment,
to push back on the verifier from reporting “dumb” false
alarms.

Given a moduleM , AV starts interprocedural exploration
starting from each procedure p in the module to find a vi-
olation. For each such check, the environment consists of
the precondition of p and the summaries of any external
procedure outside M being invoked from p. AV inspects a
defect t reported by AC, and attempts to compute a likely
specification over the unknowns in t that would block the
defect. It reports the defect only if no such likely specifica-
tion can be constructed. The ability to start analysis from
any procedure in a module allows AV to scale to find defects

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Shaobo He, Shuvendu K. Lahiri, Akash Lal, and Zvonimir Rakamaric

present in deeply nested procedures. The challenges in com-
puting such specifications lie in (a) scalability of inference,
and (b) avoiding overly strong assumption that may hide
true defects.

AV provides several knobs for analysis designers to control
the expressiveness of the specifications, that in turn helps
determine the scalability and the shape of the specifications.
For example, AV is parameterized by a vocabularyV of pred-
icates that constitutes the atoms of the specifications. For
example, the presence of spurious aliasing is often a root
cause of false alarms reported by static verifiers. Hence AV
allows the vocabulary to consist of aliasing prediates which
can be composed using Boolean connectives. Further, AV
allows the user to only suppress the data flow (i.e. treating
the conditionals in a path as non-deterministic) or suppress
the control flow of the defect [4, 6].

3 AV in practice
AV framework has been instantiated to create several check-
ers for Microsoft and open-source C/C++ codebases. We cur-
rently use Corral [8] as the underlying interprocedural asser-
tion checker, where the programs are expressed in the Boogie
language. This makes it possible to adapt the toolchain to
other languages for which translations to Boogie exist. Cor-
ral unrolls loops and recursion (upto a bound) and performs
an abstraction-refinement guided assertion-directed search
to find violations of assertions. We have instantiated AV for
two classes of generic memory-safety assertions. The first
nullcheck checks for presence of null dereferences in a pro-
gram. The second use-after-free checks for the presence
of the use of an already freed pointer. Both these properties
require deep interprocedural analysis, without well-known
modular verification strategies. We also leverage the SMV [3]
infrastructure to scale the massively parallel analysis using
Microsoft Azure cloud. The source code for AV is hosted on
Github within the Corral repository [1]. We currently have
two different instances of AV that we describe in the next
few paragraphs.

The first instance works with theMicrosoft C/C++ cl com-
piler based infrastructure for generating Boogie [5, 7]. We
have extensively evaluated this tool for nullcheck on sev-
eral modules in Windows source code, shown parity with ex-
isting mature tool such as PREfix (details here [6]) and found
several new defects. More importantly, we reported high
quality interprocedural defects with very low false alarms.
AV now shipswith the Static Driver Verifier (SDV) tool
for third-party driver developers and powers the nullcheck
rule [9]. Our preliminary evaluation of use-after-free has
also found several defects and shows promise. Much appeal
for AV comes from its “pay-as-you-go” model where more
modeling of the environment leads to more defects, but can
provide an “out-of-the-box” value even in the absence of any
modeling.

The second instance works with the LLVM compiler in-
frastructure using the SMACK [10] software verification
toolchain for generating Boogie programs. We have used
this version to search for memory-safety defects in several
open-source C/C++ modules including PX4 (software for au-
topiloting drones), Linux drivers, ssh and SQLite. Several
defects discovered in Linux drivers were confirmed by the
developers, to one of which a patch was immediately is-
sued. We have also investigated defects found by AV and the
state-of-the-art verifier Infer [2] and will report preliminary
findings on relative strengths and weaknesses.

4 Conclusion
In this talk, we will present the angelic verification (AV)
project, the underlying technology and some preliminary
use-cases. We will outline research challenges and opportu-
nities for addressing scalability and precision needs that will
make AV more widely applicable.

References
[1] 2017. Angelic Verifier (AV). https://github.com/boogie-org/corral/tree/

master/AddOns/AngelicVerifierNull. (2017).
[2] 2017. Infer tool. http://fbinfer.com/. (2017).
[3] 2017. Static Module Verifier (SMV). https://github.com/Microsoft/

Static-Module-Verifier. (2017).
[4] Sam Blackshear and Shuvendu K. Lahiri. 2013. Almost-correct spec-

ifications: a modular semantic framework for assigning confidence
to warnings. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,
2013. ACM, 209–218.

[5] Jeremy Condit, Brian Hackett, Shuvendu K Lahiri, and Shaz Qadeer.
2009. Unifying type checking and property checking for low-level
code. In ACM SIGPLAN Notices, Vol. 44. ACM, 302–314.

[6] Ankush Das, Shuvendu K. Lahiri, Akash Lal, and Yi Li. 2015. An-
gelic Verification: Precise Verification Modulo Unknowns. In Computer
Aided Verification - 27th International Conference, CAV 2015, San Fran-
cisco, CA, USA, July 18-24, 2015, Proceedings, Part I, Vol. 9206. Springer,
324–342.

[7] Akash Lal and Shaz Qadeer. 2014. Powering the static driver verifier
using corral. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, (FSE-22), Hong
Kong, China, November 16 - 22, 2014. 202–212.

[8] Akash Lal, Shaz Qadeer, and Shuvendu K. Lahiri. 2012. A Solver for
Reachability Modulo Theories. In Computer Aided Verification - 24th
International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012
Proceedings, Vol. 7358. Springer, 427–443.

[9] Microsoft. 2017. NullCheck rule (wdm). https://msdn.microsoft.com/
en-us/library/windows/hardware/mt779102(v=vs.85).aspx. (2017).

[10] Zvonimir Rakamaric and Michael Emmi. 2014. SMACK: Decoupling
Source Language Details from Verifier Implementations. In Computer
Aided Verification - 26th International Conference, CAV 2014, Held as
Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
18-22, 2014. Proceedings. 106–113.

https://github.com/boogie-org/corral/tree/master/AddOns/AngelicVerifierNull
https://github.com/boogie-org/corral/tree/master/AddOns/AngelicVerifierNull
http://fbinfer.com/
https://github.com/Microsoft/Static-Module-Verifier
https://github.com/Microsoft/Static-Module-Verifier
https://msdn.microsoft.com/en-us/library/windows/hardware/mt779102(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/mt779102(v=vs.85).aspx

	Abstract
	1 Introduction
	2 Angelic Verification
	3 AV in practice
	4 Conclusion
	References

