
TAPAS’17, August 29, 2017, New York, NY, USA Vivek Notani and Roberto Giacobazzi

Learning based Widening
Vivek Notani

Roberto Giacobazzi
University of Verona

Italy
IMDEA Software Institute

Spain
vivek.notani@univr.it,roberto.giacobazzi@univr.it

Abstract
Even though design of a widening operator is an integral
step in the design of an abstract interpreter using an infinite
domain, not much work has been done to systematize the
design of widening operator. While there exist works that de-
rive widening of higher-level domains by lifting the widening
of the base-level domain, the design of widening for base-
level domains remains largely creative process, especially for
numerical domains. This is partly because the definition of
widening requires convergence and termination while provid-
ing for very weak algebraic properties, making the problem
of creating generic widening construction techniques hard.

We provide a template widening operator, parametric on
the shape of the domain, by leveraging a duality between
Supervised Machine Learning (Regression) and Abstract In-
terpretation (Widening).

CCS Concepts •Theory of computation→ Program anal-
ysis;

Keywords Abstract Interpretation, Widening, Machine Learn-
ing, Regression

ACM Reference format:
Vivek Notani and Roberto Giacobazzi. 2017. Learning based Widen-
ing. In Proceedings of ACM SIGPLAN Workshop on Tools for Au-
tomatic Program Analysis, New York, NY, USA, August 29, 2017
(TAPAS’17), 4 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

Problem & Motivation
Consider the typical creative design process [6] of an abstract
interpreter faced by Alice. Alice starts with a set of represen-
tative programs (benchmarks) and tries to extract the (often
geometrical) structure of their invariants by dynamically mon-
itoring their behavior. Then Alice needs to generalize her
intuitions towards a domain of approximate objects (abstract
domain) and approximate transfer functions (abstract seman-
tics) for each operation of the programming language [4].
Finally, she designs the widening operations for fix-point ac-
celeration. In-fact, the last step is largely creative and often
expensive.

TAPAS’17, New York, NY, USA
2017. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

In this work, we provide a way to automatically derive
widening operator for Alice, once she has designed the do-
main, by leveraging a duality between Supervised Machine
Learning (Regression) and Abstract Interpretation (Widen-
ing).

Novel Approach
Our thesis is that widening, like regression, is an inductive
learner. Regression generalizes known states to a hypothesis.
Widening generalizes abstract states on a iteration chain to
a post fix point. While Regression usually aims to minimize
the total error (sum of false positives and false negatives),
Widening aims for soundness and hence errs on the side of
false positives to have zero false negatives. We use this duality
to derive a generic widening operator from regression on the
set of abstract states.

Widening by Learning
Intervals was the first infinite abstract domain introduced by
Cousot [5]. Next came the polyhedra [8] and octagons [10].
The widening for polyhedra has since been improved upon [1].
We observe that all of these widening work by setting unstable
bounds to infinity. For example [1, 2]∇[1, 3] = [1,∞].

We view the problem of identifying unstable bounds as
a learning theory problem. We start by representing an ab-
stract domain as a constraint system. Set of states are then
represented by a conjunction of constraints CS .

Consider a constraint system defined as the three tuple
〈CS,>,⊥〉 where CS = 〈CSvar ,∩,ϕ〉 is either empty set ϕ, a
constraint or a conjunction of constraints from the constraint
set CSvar = {~PT .~X 6 λ} and ~X , ~PT and λ are defined below.

~X = ϕ (~X ′)

P weight vector
λ constant

X ′i ∈ Var

(1)

We may also represent the entire constraint set as CS =
{P ′T .~X 6 λ′} where P ′ ism × n matrix with column vectors
〈P1, P2, ...Pn〉, ~X is a vector with m dimensions and λ′ is a
column vector in n dimensions.

Learning based Widening TAPAS’17, August 29, 2017, New York, NY, USA

In this domain model, we define widening ∇ as a binary
operator on the constraint set CS as follows:

∇ : CS ×CS → CS such that:
CS1∇CS2 ⊇ CS1, CS2 and

∀{CSi } ⊆ CS chain {CS∇i } is stable finitely
(2)

We view this as a two step process-

1. Learn: Here, widening operator uses the abstract
states fed to it at two different iterations to learn an
approximate transformer (hypothesis in machine learn-
ing terminology) that relates abstract states to iteration
count. Thus the long chain is approximated to a trans-
former.

2. Drop: Here, we obtain an upper-approximation of the
constraint set that is comprised of only the stable con-
straints. The approximated transformer is stabilized
in a sound fashion by an existential elimination of iter-
ation count in the constraints which usually amounts
to dropping the unstable constraint.

We propose to use linear regression to learn instability in
constraints. Constraint set obtained by dropping unstable
constraints would then satisfy both the conditions above and
hence, provide a suitable widening operator.

To learn the instability, we use the linear model to learn
the relationship between an element in matrix P ′ (and λ′) and
the iterator i. A linear model will always learn the element
of P ′ (and λ′) as either a constant or some linear function
of i. Clearly, a constant element corresponds to a constant
co-efficient w.r.t. iterations in the chain. Any other linear
function corresponds to an instability as we move up the
chain. Note that using a more precise model may get a better
approximation of how the co-efficient varies with each itera-
tion; However, since we only care to learn whether or not the
coefficient is constant, linear regression is the most efficient
solution.

Given two points, linear regression simply learns the straight
line joining the two points. Hence, given two constraint sets
CSi=1 = {1P

′T .~X 61 λ
′} and CSi=2 = {2P

′T .~X 62 λ
′}, the

learned constraint set would be: CSi = {iP ′T .~X 6i λ
′} where

iP
′ and iλ

′ as defined below.

iP
′ = [iP ′k,l] where k ∈ [1,m], l ∈ [1,n] and

i ~P ′l = (2 ~P ′l −1 ~P ′l).(i − 1) +1 ~P ′l

i ~λ′ = [iλ′l,1] where l ∈ [1,n]

iλ
′
l = (2λ

′
l,1 −1 λ

′
l,1).(i − 1) +1 λ

′
l,1

(3)

Next, to obtain CS1∇CS2, we want an existential elimina-
tion of i. So we drop the rows in matrix 3P

′T and 3λ
′, that

have a non-zero coefficient to i. Note since we want to drop
unstable constraints, dropping a row in one matrix (P ′Torλ′)
is accompanied by dropping the corresponding row in the
other matrix as well. The widening result is thus defined as

CS1∇CS2 = {P
′T .~X 6 λ′} where:

iP
′ = [iP ′k,l] where k ∈ [1,m], l ∈ [1,n] and

i ~P ′l =1 ~P ′l if ∀k ∈ [1,m]2P ′k,l =1 P
′
k,l

= 0 otherwsise

i ~λ′ = [iλ′l,1] where l ∈ [1,n]

iλ
′
l =1 λ

′
l,1 if (2λ′l,1 =1 λ

′
l,1) ∧i

~P ′l , 0
= 0 otherwise

(4)

Dropping a conjunct results in a more relaxed constraint
set. Also, since the resultant constraint set is independent of
i, it is indeed a fix-point to the chain. Hence, it satisfies the
conditions of widening as defined in equation-2.

Example: Interval
Next we describe the process via an example. Consider
P : x = 1; y = 0; while x < 10 {x + +; y + +}. We use the
interval [5] domain I to infer the invariant that defines the
bounds on x and y. Intervals in two dimensions are conjunc-
tion of four lines: a1 6 x 6 a2 ∧ a3 6 y 6 a4 where real
valued a1,a2, ...,a4. The constraint sets at iteration i=2 and
i=3 can be expressed in the matrix form as:

CSi=2 =

1 0
−1 0
0 1
0 −1

×

[
x
y

]
6

2
−1
1
0

CSi=3 =

1 0
−1 0
0 1
0 −1

×

[
x
y

]
6

3
−1
2
0

Learn step gives the new constraint set as a linear function

of the iterator i:

CSi =

1 0
−1 0
0 1
0 −1

×

[
x
y

]
6

i
−1
i − 1
0

Next, in Drop step we drop all rows with i in either matrix to
obtains the widening.

CS2∇CS3 =

[
−1 0
0 −1

]
×

[
x
y

]
6

[
−1
0

]

Clearly the result is a stable fix point and a super-set of all
iterates. Additionally, widening obtained via our template
operator is the same as that obtained by traditional methods.

Example: Octagon Widening
Consider P : x = 1; y = 0; while x < 10 {x + +; y + +}. We
must use the domain of octagons O to infer the invariant
that relates x and y [10]. Octagons are conjunction of eight
lines: a1 6 x 6 a2 ∧ a3 6 y 6 a4 ∧ a5 6 a6x + y 6
a7 ∧ a8 6 −a6x + y 6 a9 where real valued a1,a2, ...,a9. In
order to compute JPKO during the fourth iteration inside the
loop (point 2), we use widening to generalize observations:
octagons at i = 2 and i = 3 are described below.

TAPAS’17, August 29, 2017, New York, NY, USA Vivek Notani and Roberto Giacobazzi

point2(i = 2) = point2(i = 3) =
1 6 x 6 2 ∧ 0 6 y 6 1 1 6 x 6 3 ∧ 0 6 y 6 2

1 6 x + y 6 3 1 6 x + y 6 5
−1 6 −x + y 6 −1 −1 6 −x + y 6 −1

point2(i = 2)∇point2(i = 3) =
1 6 x ∧ 0 6 y

1 6 x + y

−1 6 −x + y 6 −1

(5)

The widening on octagons extrapolates unstable bounds to
infinity (equation-5). In this case abstract interpretation finds
a1,a2, ...,a9 such that the octagon is a sound program invari-
ant.

With linear regression we can automatically determine un-
stable bounds and therefore design the corresponding widen-
ing operation. The constraint sets at i=2 and i=3 can be
expressed in the matrix form as:

CSi=2 =

1 0
−1 0
0 1
0 −1
1 1
−1 −1
−1 1
1 −1

×

[
x
y

]
6

2
−1
1
0
3
−1
−1
1

CSi=3 =

1 0
−1 0
0 1
0 −1
1 1
−1 −1
−1 1
1 −1

×

[
x
y

]
6

3
−1
2
0
5
−1
−1
1

Given the two constraint sets as input to the linear regressor,
we obtain the new constraint set as a linear function of the
iterator i as defined by equation-4:

CSi =

1 0
−1 0
0 1
0 −1
1 1
−1 −1
−1 1
1 −1

×

[
x
y

]
6

i
−1
i − 1
0

2i − 1
−1
−1
1

Next, we drop all rows with i in either matrix to obtains
the widening.

CS2∇CS3 =

−1 0
0 −1
−1 −1
−1 1
1 −1

×

[
x
y

]
6

−1
0
−1
−1
1

Clearly the widening obtained above from regression is the

same as that obtained by traditional methods in equation-5.

Conclusion
Our key result is the duality between supervised machine
learning (Regression) and abstract interpretation (Widening).
Indeed both regression and widening are inductive learners-
they generalize from observations; However, until now they
have been studied separately as distinct fields of study. We
hope to change that. Further, we used this relationship be-
tween widening and regression to come up with a widening
operator parametric on the domain.

Related Works
Even though design of a widening operator is an integral
step in the design of an abstract interpreter using an infinite
domain, not much work has been done to systematize the
design of widening operator. There is currently no known
algorithm for automatically deriving a widening operator for
any given domain.

Most work on the design of widening operators has been
restricted to specific domains- type graphs [11], ellipsoid do-
main for digital filters [9], etc. However, some work has been
done recently to study the widening operator properties to sup-
port systematic construction of widening [3, 7]. In [2] authors
describe three generic methods to derive widening for power-
set domains by lifting the base-level abstract domains. In [3],
authors show how widening operators can be combined in
the cartesian and reduced product of abstract domains. How-
ever, all these works provide for deriving widening of higher
level domains by lifting widening of base-level domains. Our
work provides for a way to automatically derive widening of
base-level numerical domains.

References
[1] Roberto Bagnara, Patricia M Hill, Elisa Ricci, and Enea Zaffanella.

2005. Precise widening operators for convex polyhedra. Science of
Computer Programming 58, 1-2 (2005), 28–56.

[2] Roberto Bagnara, Patricia M Hill, and Enea Zaffanella. 2004. Widen-
ing operators for powerset domains. In International Workshop on
Verification, Model Checking, and Abstract Interpretation. Springer,
135–148.

[3] Agostino Cortesi. 2008. Widening operators for abstract interpretation.
In 2008 Sixth IEEE International Conference on Software Engineering
and Formal Methods. IEEE, 31–40.

[4] Patrick Cousot and Radhia Cousot. Abstract interpretation: a uni-
fied lattice model for static analysis of programs by construction or
approximation of fixpoints. In POPL’77. ACM, 238–252.

Learning based Widening TAPAS’17, August 29, 2017, New York, NY, USA

[5] Patrick Cousot and Radhia Cousot. 1976. Static determination of
dynamic properties of programs. In Dunod.

[6] Patrick Cousot and Radhia Cousot. 1979. Systematic design of pro-
gram analysis frameworks. In Proceedings of the 6th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages. ACM,
269–282.

[7] Patrick Cousot and Radhia Cousot. 1992. Comparing the Galois con-
nection and widening/narrowing approaches to abstract interpretation.
In International Symposium on Programming Language Implementa-
tion and Logic Programming. Springer, 269–295.

[8] Patrick Cousot and Nicolas Halbwachs. 1978. Automatic discovery of
linear restraints among variables of a program. In Proceedings of the
5th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages. ACM, 84–96.

[9] Jérôme Feret. 2004. Static analysis of digital filters. In European
Symposium on Programming. Springer, 33–48.

[10] Antoine Miné. 2006. The octagon abstract domain. Higher-order and
symbolic computation 19, 1 (2006), 31–100.

[11] Pascal Van Hentenryck, Agostino Cortesi, and Baudouin Le Charlier.
1994. Type analysis of Prolog using type graphs. ACM SIGPLAN
Notices 29, 6 (1994), 337–348.

	Abstract
	References

