
§2. The Old Event Model Lecture VII Page 1

Lecture VII

SWING (II)

Reference: David Geary, Graphic Java, Vols.1 and 2.

All modern GUI systems are based on call-back functions which are called when events occur. Java is no
different. But the original AWT architecture has many defects that were remedied by the Swing Architecture.
But it does not mean that AWT is deprecated – it cannot be since Swing is built on top of AWT.

Swing will work on both Netscape Navigator (version 4.04 or later) as well as Microsoft Internet (version
4.0 or later). But it may involve some effort and bugs may still occur. For this reason, we generally prefer
AWT for a multiplatform applet applications. In the appendix below, we give some instructions for viewing
Swing applets on browsers.

A key idea here is the notion of pluggable look and fell. The intuitive idea is that when you are in
an environment (e.g., Macs, or Windows, or Solaris), they provide a certain consistent visual presentation
(i.e., look), and a certain behavior (i.e., feel). If you want Swing GUI’s to be able to duplicate all such
look-and-feels, you need a “pluggable” architecture. The problem with AWT 1.0 is that the peer-based
architecture takes away much of this flexibility.

The second key concept in Swing is the Model-View-Controller (MVC) Design paradigm.
Model: This is the logical structure of the data and their associated values (state information). The model
provides methods to access and modify these values.
View: This gives a visual presentation of the model. Each view has it own set state information. It is the
”look” of look-and-feel. In Swing, you can identify this with the Components of Swing. What is important is
that the view parameters are maintained somewhat independently of the model, and you can have multiple
views.
Controller: This handle events and mediates between the Model and View. It is the ”feel” of look-and-feel.
In Swing, you can identify these with the listeners.

§1. The Old Event Model

The original AWT Event Model (version 1.02 and earlier) is said to be inheritance-based. The new
model (version 1.1 and later) is said to be delegation-based. Since the new model is backwards compatible,
it is worthwhile briefly summarizing the old model:

• If an event occurs in a component, a method of that component is called. E.g., the setSize(w,h)
method of a component is called when the component is resized.

• Methods like setSize(w,h) are specific to an event type. There is one method called
HandleEvent(Event e) that responds to a whole class of events (e.g. Mouse, Window, Keyboard,
etc). By definition, events handled by handleEvent(e) are called propagated events. This method
returns a boolean. If true is returned, it signifies that the handleEvent method has completely dealt
with the event. If false, the event would be propagated to the component container’s handleEvent
method. Hence the name “propagated events”.

• Direct implementation of handleEvent is tedious. There is a default implementation that checks the
type of the event, and calls special methods (action(...), mouseUP(...), mouseDown(...), etc). The
default implementation of the special methods are null, so you just have to override this default.

c© Chee-Keng Yap April 30, 2003

§4. Mouse Event Example Lecture VII Page 2

§2. Delegation Event Model

We now summarize the AWT 1.1 model for events. Instead of insisting

• The basic idea is that Components can fire events. Hence Components are known as event sources.
(Java has 2 event source interfaces: Adjustable and ItemSelectable p.249, Geary).

• Events are responded to by listeners. The listeners must be registered with the event source (i.e.,
Component), typically by invoking the Component’s method called addXXXListener(XXXLister),
where XXX is the name of the event. For instance, action events can be registered using
addActionListener(ActionListener). You can also removeXXXListener(...)

• When an event occurs in a Component, all the listeners for that event is invoked (in some non-
deterministic order). The various listeners have suitable interfaces so that appropriate methods in the
listeners are called. The listener methods are passed a reference to an Event object: this object can
be queried for the event source, an ID, time, position, etc.

• Thus most events are “multicast”. If you want to make a certain event “unicast”, you can do so when
you register the first listener for that event (p.248, Geary).

§3. Listener Interfaces

There are 12 listener interfaces, with the appropriate methods. To avoid clutter, we simply note the
names of the methods:

Listener Type Methods
ActionListener: actionPerformed
AdjustmentListener: adjustmentValueChanged
ComponentListener: componentHidden, componentMoved, componentResized, componentShwon
ContainerListener: componentAdded, componentRemoved
FocusListener: focusGained, focusLost
InputMethodListener: caretPositionChanged, inputMethodTextChanged
ItemListener: itemStateChanged
KeyListener: keyTyped, keyPressed, keyReleased
MouseListener: mouseClicked, mouseEntered, mouseExited, mousePressed, mouseReleased
MouseMotionListener: mouseDragged, mouseMoved
TextListener: textValueChanged
WindowListener: windowActivated, windowDeactivated, windowClosed, windowOpened, windowClosing, windo

As usual, to help user implement only selected methods easily, we have adapters for the above interfaces.
Thus we have default implementations called XXXAdapter for XXXListener interface. E.g., WindowAdapter
for E.g., WindowListener. (However, for the 4 interfaces with only one method each, there are no adapters.)

§4. Mouse Event Example

The following applet shows a Button, and whenever the mouse enters or exits the button area, an
appropriate message is printed on the screen.

c© Chee-Keng Yap April 30, 2003

§5. Border in AWT Lecture VII Page 3

import java.awt.*;
import java.awt.event.*;

public class ButtonTest1
extends ApplicationFrame {

Label lab = new Label("Initial");

ButtonTest1(String s) {
super(s);
Button button = new Button("Press Me");
button.addMouseListener(new ButtonMouseListener());

setBackground(Color.blue);

setLayout(new BorderLayout());
add(button, "North");

add(lab, "South");
setVisible(true);

}

public static void main(String[] args) {
ButtonTest1 myBut = new ButtonTest1("Press Me");

}

class ButtonMouseListener
extends MouseAdapter {

public void mouseEntered(MouseEvent event) {
System.out.println("Mouse Entered Button");

lab.setText("Mouse Entered Button");
}
public void mouseExited(MouseEvent event) {

System.out.println("Mouse Exited Button");
lab.setText("Mouse Exited Button");

}
public void mouseClicked(MouseEvent event) {

dispose();
System.exit(0);

}
}//ButtonMouseListener Class

}

CLICK HERE for source code.
CLICK HERE for an applet demo

§5. Border in AWT

Using Swing, you have a large selection of borders to choose from. In AWT, we can do simple borders
(as you will need in HW3):

/*

c© Chee-Keng Yap April 30, 2003

§6. Border in AWT Lecture VII Page 4

* @source: p.339, Geary vol.1
*/

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

public class ValidateApplet extends Applet {
private GrayPanel grayPanel = new GrayPanel();
public void init() {
add(grayPanel);
}
}
class GrayPanel extends Panel implements ActionListener {
private TextField field = new TextField("TextField");
private Button lgButton = new Button ("larger font");
private Button smButton = new Button ("smaller font");

public GrayPanel() {
lgButton.addActionListener(this);
smButton.addActionListener(this);

add(field);
add(lgButton);
add(smButton);
setBackground(Color.gray);
}
public void actionPerformed(ActionEvent event) {
Button button = (Button)event.getSource();
Font curFont = field.getFont();
int newSize = curFont.getSize();

if(button == lgButton) newSize += 3;
if(button == smButton) newSize -= 3;

field.setFont(new Font(curFont.getFamily(),
curFont.getStyle(), newSize));

}
public void paint(Graphics g) {
Graphics2D g2 = (Graphics2D)g;
Stroke stroke = new BasicStroke(8,
BasicStroke.CAP_BUTT,
BasicStroke.JOIN_ROUND
);
g2.setStroke(stroke);
g2.setColor(Color.green);
g2.drawRect(0,0,getSize().width-2,getSize().height-2);
}
}//GreyPanel

CLICK HERE for source code.
CLICK HERE for an applet demo

c© Chee-Keng Yap April 30, 2003

§7. APPENDIX: Using Swing in Browsers Lecture VII Page 5

§6. Classification of Events

In the above table, the 3rd column classifies all events into either Component Events or Semantic
Events.

Component events are subclassified into input events or not. Input events can be ”consumed”, and are
not passed to the component’s peers. Intuitively, the non-input component events are “output events”.

Semantic events are not necessarily triggered by atomic actions, and depends on the class. E.g., lists fire
action events when their items are double-clicked, while textfields fire action events when ”enter” is typed.

§7. APPENDIX: Using Swing in Browsers

Swing is included in 1.2 release of JDK, but for 1.1 release, you need to download Swing from the URL
http://java.sun.com/products/jfc/.

NETSCAPE NAVIGATOR: You need version 4.04 or later, and have 1.1 JDK patch installed. Go
to http://developer.netscape.com/software/jdk/download.html. Once you have the Swing jar files, you
must make it accessible to Netscape: either copy the file to a directory known to Netscape, or modify
the system CLASSPATH variable. The following directory is known to Netscape navigator: it is usually
C:\ProgramFiles\Netscape\Communicator\Program\Java\Classes. To set the CLASSPATH variable,
see below.

INTERNET EXPLORER: You need Version 4.0 or later. You just need to tell IE where your Swing jar
files are located. This you do by setting the system CLASSPATH variable.
Windows NT: go to the System icon in the control panel. Under System Properties, click the Environment
tab. Add CLASSPATH variable to the lower list entitled ”User Variables for Administrator”. There are
two text fields named ”Variable:” and ”Value:” for entering this information. The CLASSPATH variable
should include the ”classes.zip” files for JDK and ”swingall.jar” file. The Variable should be CLASSPATH,
and as an example of the Value, we have D:\jdk\lib\classes.zip;D:\swing\swingall.jar. (Note that
the various paths are colon separated, and we have the classes in the D: drive in this example.) Reboot the
system.

For some applications, you may further need to use a Java Plug-in from Sun.

END OF LECTURE

c© Chee-Keng Yap April 30, 2003

