
§1. Randomized Algorithms Lecture IX Page 1

Lecture IX

RANDOMIZATION AND DERANDOMIZATION

Probabilistic thinking turns out to be uncannily effective for proving the existence of combina-
torial objects. Such proofs can often be converted into randomized algorithms. There exist efficient
randomized algorithms for problems that are not known to have efficient deterministic solutions.
Even when both deterministic as well as randomized algorithms are available for a problem, the
randomized algorithm is usually simpler. This fact may be enough to favor the randomized algo-
rithm in practice. Sometimes, the route to deterministic solution is via a randomized one: after a
randomized algorithm has been discovered, we may be able to remove the use of randomness. We
will illustrate such “derandomization” techniques. For further reference, see Alon, Spencer and
Erdös [1].

§1. Introduction to Randomized Algorithms

We use a simple toy problem to illustrate probabilistic thinking in algorithm design.

A k-coloring of the edges of a graph G = (V, E) is an assignment C : E → {1, . . . , k}. There
are k|E| such colorings. A random k-coloring is one that is equal to any of the k|E| colorings with
equal probability. Alternatively, a random k-coloring is one that assigns each edge to any of the k
colors with probability 1/k.

Lemma 1. Let c and n be positive integers. In the random 2-coloring of the edges of the complete

graph Kn, the expected number of copies of Kc that are monochromatic is

(
n

c

)
21−(c

2)

Proof. Let X count the number of monochromatic copies of Kc in a random edge 2-coloring of
Kn. If V is the vertex set of Kn then

X =
∑

U

XU (1)

where U ∈
(
V
c

)
and XU is the indicator function of the event that the subgraph of Kn restricted

to U is monochromatic. The probability that XU = 1 is the probability that U is monochromatic.
Since there are

(
c
2

)
edges in U and we can color it monochromatic in one of two colors (all white

or all black), the probability of the event XU = 1 is

Pr {XU = 1} = 21−(c

2).

But E[XU] = Pr {XU = 1} since XU is an indicator function. Since there are
(
n
c

)
choices of U , we

obtain E[X] =
∑

U E[XU] =
(
n
2

)
21−(c

2), by linearity of expectation. Q.E.D.

Corollary 2. There exists an edge 2-coloring of Kn such that the number of monochromatic

copies of Kc is at most (
n

c

)
21−(c

2)

c© Chee-Keng Yap Basic Version May 6, 2008

§1. Randomized Algorithms Lecture IX Page 2

¶1. Existence to Construction: Monochromatic Triangles Consider how to find a 2-
coloring assured by this corollary. Let the 2 colors be red and blue. Furthermore, suppose c = 3
so that we desire a 2-coloring of Kn such that the number of monochromatic triangles is at most(
n
3

)
21−(3

2) =
(
n
3

)
2−2 = 1

4

(
n
3

)
. There is a trivial randomized algorithm if we are willing to settle for

a slightly larger number of monochromatic triangles, say 1

3

(
n
3

)
:

Randomized Coloring Algorithm:

Input: n
Output: a 2-coloring of Kn with < 1

3

(
n
3

)
monochromatic triangles

repeat forever:
1. Randomly color the edges of Kn blue or red.
2. Count the number X of monochromatic triangles.
3. If X < 1

3

(
n
3

)
, return the random coloring.

If the program halts, the random coloring has the desired property. The probability that a
random coloring does not have the property is at most 3/4. In proof: if the probability is more
than 3/4, then the expected number of monochromatic triangles in a random coloring is more than
3

4
· 1

3

(
n
3

)
, contradicting our lemma. (This is really an application of Markov’s inequality.) Hence

the probability of repeating the loop at least once is at most 3/4. If T is the time to do the loop

once and T̃ is the expected time of the algorithm, then

T̃ ≤ T +
3

4
T̃

which implies T̃ ≤ 4T (how?). But note that

T = T (n) = O(n3),

since there are O(n3) triangles to check. Thus the expected running time is T̃ = O(n3). a Las Vegas
Algorithm!

Note that our randomized algorithm has unbounded worst-case running time. Nevertheless,
the probability that the algorithm halts is 1. Otherwise, if there is a positive probability ǫ > 0 of
not halting, then expected running time becomes unbounded (≥ ǫ×∞), which is a contradiction.
Alternatively, the probability of not halting is at most (3/4)∞ = 0.

Reprise: to appreciate the power and simplicity of the randomized algorithm, suppose we want
to solve the same problem deterministically. The simplest way to do this is to systematically try all
2-colorings of Kn, and for each, check whether the number of monochromatic triangles is ≤ 1

3

(
n
3

)
.

Now, we have no assurance that we can find this rapidly. So the complexity, for all we know, is

Ω(2(n

2)) since there are 2(n

2) 2-colorings.

¶2. A Better Algorithm for Triangles. The previous algorithm clearly generalized to the
general case of c ≥ 4. For the special case of c = 3, we can improve the algorithm by using
Chebyshev’s inequality. Now we need to compute the variance of X . Since X is the sum of XU ’s
where U ∈

(
V
3

)
, (see equation (1)), life would be much simpler if the XU ’s are pairwise independent.

Let (ijk), (i′j′k′) ∈
(
V
3

)
be two distinct triangles. We claim that Xijk and Xi′j′k′ are independent.

This is clearly true if the triangles have at most one vertex in common. It remains to consider the
case where they share two vertices: consider a triangle “twin” (ijk) and (ijk′) (figure 1).

c© Chee-Keng Yap Basic Version May 6, 2008

§3. The Probabilistic Method Lecture IX Page 3

i

k

j

k′

Figure 1: Triangle twin (ijk) and (ijk′)

It is easy to see that the probability of (ijk′) being monochromatic is not affected by the
knowledge that (ijk) is (is not) monochromatic:

Pr{Xijk′ = 1|Xijk = 1} = Pr{Xijk′ = 1} = 1/4.

It follows that the variance XU ’s are indeed pairwise independent. CONTINUED...

Exercises

Exercise 1.1: For small values of n, it seems easy to find 2-colorings with fewer than 1

4

(
n
3

)

monochromatic triangles. For instance, when n = 5, we can color any 5-cycle red and
the non-cycle edges blue, then there are no monochromatic triangles (the theorem only gave
a bound o 2 monochromatic triangles). Consider the following simple deterministic algorithm
to 2-color Kn: pick any T tour of Kn. A tour is an n-cycle that visits every vertex of Kn

exactly once and returns to the starting point. Color the n edges in T red, and the rest blue.
Prove that this algorithm does not guarantee at most 1

4

(
n
3

)
monochrome triangles. For which

values of n does this algorithm give fewer than 1

4

(
n
3

)
monochrome triangles? ♦

Exercise 1.2: Fixed a G graph with n nodes. Show that a random graph of size 2 log n does not
occur as an induced subgraph of G. ♦

Exercise 1.3:

(i) What is the role of “3/4” in the first randomized algorithm?
(ii) Give another proof that the probability of halting is 1, by lower bounding the probability
of halting at the ith iteration.
(iii) Modify the algorithm into one that has a probability ε > 0 of not finding the desired
coloring, and whose worst case running time is Oε(n

3).
(v) Can you improve T (n) to o(n3)? ♦

Exercise 1.4:

(a) Construct a deterministic algorithm to 2-color Kn so that there are at most 2
(
n/2

3

)

monochromatic triangles. HINT: use divide and conquer.
(b) Generalize this construction to giving a bound on the number of monochromatic Kc for
any constant c ≥ 3. Compare this bound with the original probabilistic bound. ♦

End Exercises

c© Chee-Keng Yap Basic Version May 6, 2008

§3. Tracking a Random Object Lecture IX Page 4

§2. The Probabilistic Method

§3. Tracking a Random Object

We began with an existence proof of a coloring of Kn that does not have “too many” monochro-
matic copies of Kc. Then we derived a simple randomized algorithm to find such a coloring. Sup-
pose we now want a deterministic algorithm instead. We use a method of Spencer and Raghavan
to convert a randomized algorithm into a deterministic one. Alternatively, the method converts
a probabilistic existence proof into a deterministic algorithm. Such a conversion has been termed
“derandomization”, and is based on conditional probabilities.

For our problem of 2-coloring Kn, the derandomization method is rather simple. We claim that
the following deterministic algorithm will compute a 2-coloring with at most 1

4

(
n
3

)
monochromatic

triangles:

Deterministic Coloring Algorithm:

1. Arbitrarily order the edges e1, e2, . . . , em, m =
(
n
2

)
.

2. Consider each ei in turn:
2.0. So e1, . . . , ei−1 had been colored.
2.1. Compute W red

i , defined to be the expected number of monochromatic triangles
if ei is next colored red and the remaining edges are randomly colored.
Similarly, compute W blue

i .
2.2. Color ei red iff W red

i−1 ≤ W blue
i−1 .

¶3. Correctness. We claim that the final coloring has at most 1

4

(
n
3

)
monochromatic trian-

gles. In proof, let Wi be the expected number of monochromatic triangles if the remaining edges
ei+1, ei+2, . . . , em are randomly colored, conditioned on some given coloring of e1, . . . , ei. Initially
we have

W0 =
1

4

(
n

3

)
.

Clearly,

Wi−1 =
W red

i + W blue
i

2
≥ min{W red

i , W blue
i } = Wi.

It follows that W0 ≥ W1 ≥ · · · ≥ Wm. But Wm corresponds to a 2-coloring C of Kn and so Wm

must count the number of monochromatic triangles of C. Moreover,

Wm ≤ W0 ≤
1

4

(
n

3

)
,

as desired.

¶4. Complexity. To see that the above outline can be turned into an effective algorithm, we
show that Wi can be computed in polynomial time. This is straightforward: for any triple U of
vertices in Kn, let Xi,U be the indicator function for the event that U will be monochromatic if
the remaining edges ei+1, . . . , em are randomly colored. Then

Wi =
∑

U

E[Xi,U]

c© Chee-Keng Yap Basic Version May 6, 2008

§3. Tracking a Random Object Lecture IX Page 5

where the sum ranges over all U . But E[Xi,U] is just the probability that U will become monochro-
matic:

E[Xi,U] =

2 · 2−3 if no edge of U has been colored,
2−3+i if i = 1, 2, 3 edges of U has been colored with one color,
0 the edges of U have been given both colors.

Clearly W red
i and W blue

i can be computed in O(n3) time. This leads to an O(n5) time algorithm.
But it is not hard to see that O(n) suffices if we already know Wi−1, giving an overall O(n3) time.

¶5. Framework for deterministic tracking. It is instructive to see the above algorithm in
a general framework. Let D be a set of objects and χ : D → R is a real function. For instance, D
is the set of 2-colorings of Kn and χ counts the number of monochromatic triangles. In general,
think of χ(d) as computing some “characteristic value” of d ∈ D. Call an object d “good” if
χ(d) ≤ k (for some k); and “bad” otherwise. Our problem is to find a good object d ∈ D. First
we introduce a sequence tracking variables X1, . . . , Xm in some probability space (Ω, 2Ω, Pr). Each
Xi is an independent Bernoulli r.v. where Pr{Xi = +1} = Pr{Xi = −1} = 1

2
. We want these

variables to be “complete” the sense that for any ǫ1, . . . , ǫm ∈ {±1}, the event

{X1 = ǫ1, . . . , Xm = ǫm}

is an elementary event. For instance, we can simply let Ω = {±1}m and

Xi(ǫ1, ǫ2, . . . , ǫm) = ǫi

for (ǫ1, . . . , ǫm) ∈ Ω. We also introduce a random object g : Ω → D with the property

E[χg] ≤ k (2)

where χg is the random variable χg(ω) = χ(g(ω)), ω ∈ Ω. This means that there is some sample
point ω such that g(ω) is good. Let W (ǫ1, . . . , ǫi) denote the conditional expectation

W (ǫ1, . . . , ǫi) := E[χg|X1 = ǫ1, . . . , Xi = ǫi].

Write Wi as shorthand for W (ǫ1, . . . , ǫi). Hence, our assumption (2) above amounts to W0 ≤ k.
Inductively, suppose we have determined ǫ1, . . . , ǫi−1 so that

Wi−1 = W (ǫ1, . . . , ǫi−1) ≤ k.

Then observe that

Wi−1 =
W (ǫ1, . . . , ǫi−1, +1) + W (ǫ1, . . . , ǫi−1,−1)

2
≥ min{W (ǫ1, . . . , ǫi−1, +1), W (ǫ1, . . . , ǫi−1,−1)}.

Hence, if we can efficiently compute the value W (ǫ′1, . . . , ǫ
′
i) for any choice of ǫ′j ’s, we may choose

ǫi so that Wi ≤ Wi−1, thus extending our inductive hypothesis. The hypothesis Wi ≤ k implies
there is a sample point ω ∈ {X1 = ǫ1, . . . , Xi = ǫi} such that g(ω) is good. In particular, the
inequality Wm ≤ k implies that g(ω) is good, where ω = (ǫ1, . . . , ǫm). Thus, after m steps, we
have successfully “tracked” down a good object g(ω). Note that this is reminiscent of the greedy
approach.

The use of the conditional expectations Wi is clearly central to this method. A special case of
conditional expectation is when Wi are conditional probabilities. If we cannot efficiently compute
the Wi’s, some estimates must be used. This will be our next illustration.

Exercises

c© Chee-Keng Yap Basic Version May 6, 2008

§5. Discrepancy Random Variables Lecture IX Page 6

Exercise 3.1: Generalize the above derandomized algorithm 2-coloring Kn while avoiding too
many monochromatic Kc, for any c ≥ 4. What is the complexity of the algorithm? ♦

Exercise 3.2:

(i) If the edges of K4 (the complete graph on 4 vertices) are 2-colored so that two edges
e, e′ have one color and the other 4 edges have a different color, and moreover e, e′ have no
vertices in common, then we call this coloring of K4 a “kite”. What is the expected number

4

3

2

1

2

1

3

4

Figure 2: A kite drawn in two ways: edges (1,3) and (2,4) are red, the rest blue.

of kites in a random 2-coloring of the edges of Kn?
(ii) Devise a deterministic tracking algorithm to compute a 2-coloring which achieves at least

this expected number. but analyze its complexity.
(iii) Forget deterministic tracking, but give a simple O(n2) algorithm to do the same. ♦

§4. Maximum Satisfiability

The MaxSat Problem is another classic problem for which our tracking framework. In this
problem, we are given a set F = {C1, . . . , Cm} of clauses in the Boolean variables x1, . . . , xn, and
the problem is to find an assignment I : xi 7→ I(xi) = bi(i = 1, . . . , n) of Boolean values such that
the number #I(F) of clauses in F satisfied by I is maximimzed.

§5. Discrepancy Random Variables

A typical “discrepancy problem” is this: given real numbers a1, . . . , an, choose signs ǫ1, . . . , ǫn ∈
{±1} so as to minimize the absolute value of the sum

S =

n∑

i=1

ǫiai.

The minimum value of |S| is the discrepancy of (a1, . . . , an). Call1 a random variable X a discrep-

ancy r.v. if the range of X is ±1; it is random if, in addition,

Pr{X = +1} = Pr{X = −1} =
1

2
.

The hyperbolic cosine function cosh(x) = (ex + e−x)/2 arises naturally in discrepancy random

1Clearly, this is just another name for a Bernoulli r.v..

c© Chee-Keng Yap Basic Version May 6, 2008

§6. Matrix Discrepancy Lecture IX Page 7

variables. If Xi are random discrepancy r.v.’s, then

E[eaiXi] =
eai + e−ai

2
= cosh(ai)

E[ea1X1+a2X2] =
ea1+a2 + e−a1−a2 + ea1−a2 + e−a1+a2

4

=
cosh(a1 + a2) + cosh(a1 − a2)

2
.

Using the fact that

2 cosh(a1) cosh(a2) = cosh(a1 + a2) + cosh(a1 − a2),

we conclude that E[ea1X1+a2X2] = cosh(a1) cosh(a2). In general, with S =
∑n

i=1
aiXi, we get

E[eS] =

n∏

i=1

cosh(ai). (3)

A useful inequality in this connection is

cosh(x) ≤ ex2/2, x ∈ R, (4)

with equality iff x = 0. This can be easily deduced from the standard power series for ex.

Exercises

Exercise 5.1:

(i) Verify equation (4).

(ii) Show the bound Pr{X1 + · · · + Xn > a} < e−a2/2n, where Xi are random discrepancy
r.v.’s and a > 0. ♦

§6. A Matrix Discrepancy Problem

Raghavan considered a discrepancy problem in which we need to estimate the conditional
probabilities. Let A = (aij) be an n × n input matrix with |aij | ≤ 1. Let Ω = {±1}n. Our goal
want to find ǫ = (ǫ1, . . . , ǫn) ∈ Ω, such that for each i = 1, . . . , n,

∣∣∣∣∣∣

n∑

j=1

ǫjaij

∣∣∣∣∣∣
≤ αn

where

α :=

√
2 ln(2n)

n
. (5)

This choice of α will fall out from the method, so it is best to treat it as a yet-to-be-chosen constant
(n is fixed during this derivation). Using the method of deterministic tracking, we introduce random
discrepancy r.v.’s X1, . . . , Xn such that Xi(ǫ) = ǫi for all i. Also introduce the r.v.’s

Si =

n∑

j=1

Xjaij , i = 1, . . . , n.

c© Chee-Keng Yap Basic Version May 6, 2008

§6. Matrix Discrepancy Lecture IX Page 8

Suppose the values ǫ1, . . . , ǫℓ have been choosen. Consider the event

Cℓ := {X1 = ǫ1, . . . , Xℓ = ǫℓ}

and the conditional “bad” event
Bℓ

i := { |Si| > αn |Cℓ}.

To carry out the deterministic tracking method above, we would like to compute the probability
Pr(Bℓ

i). Unfortunately we do not know how to do this efficiently. We therefore replace Pr(Bℓ
i) by

an easy to compute upper estimate, as follows:

Pr(Bℓ
i) = Pr{|Si| > αn

∣∣Cℓ }

= Pr{eαSi > eα2n
∣∣Cℓ } + Pr{e−αSi > eα2n

∣∣Cℓ }

≤ e−α2n
E[eαSi + e−αSi

∣∣Cℓ] (Markov inequality)

= e−α2nW ℓ
i ,

where the last equation defines W ℓ
i . Thus we use W ℓ

i as surrogate for Pr(Bℓ
i). We do it because

we can easily compute W ℓ
i as follows:

W ℓ
i = E[eαSi + e−αSi |Cℓ]

= E[exp

α

ℓ∑

j=1

ǫjaij

 exp

α

n∑

j=ℓ+1

Xjaij

] + E[exp

−α

ℓ∑

j=1

ǫjaij

 exp

−α

n∑

j=ℓ+1

Xjaij

]

= exp

α

ℓ∑

j=1

ǫjaij

n∏

j=ℓ+1

cosh(αaij) + exp

−α

ℓ∑

j=1

ǫjaij

n∏

j=ℓ+1

cosh(αaij)

= 2 cosh

α

ℓ∑

j=1

ǫjaij

n∏

j=ℓ+1

cosh(αaij).

In particular, for ℓ = 0,

n∑

i=1

W 0
i = 2

n∑

i=1

n∏

j=1

cosh(αaij)

≤ 2

n∑

i=1

n∏

j=1

ea2

ijα2/2

< 2nenα2/2,

where the last inequality is strict since we will assume no row of A is all zero. So the probability
that a random choice of ǫ is bad is at most

n∑

i=1

Pr(B0
i) ≤ e−nα2

n∑

i=1

W 0
i

< 2ne−nα2/2.

We choose α so that the last expression is equal to 1; this is precisely the α in (5). This proves
that there is a sample point ǫ where none of the n bad events B0

i occur. The problem now is to
track down this sample point. In the usual fashion, we show that if ǫ1, . . . , ǫℓ have been chosen
then we can choose ǫℓ+1 such that

n∑

i=1

W ℓ
i ≥

n∑

i=1

W ℓ+1
i .

c© Chee-Keng Yap Basic Version May 6, 2008

§6. Matrix Discrepancy Lecture IX Page 9

This can be done as follows: let Cℓ
+ denote the event Cℓ ∩ {Xℓ+1 = +1} and similarly let Cℓ

− :=
Cℓ ∩ {Xℓ+1 = −1}. Then

n∑

i=1

W ℓ
i =

n∑

i=1

E[eαSi + e−αSi|Cℓ]

=
n∑

i=1

E[eαSi + e−αSi|C+

ℓ] + E[eαSi + e−αSi|C−
ℓ]

2

≥ min{

n∑

i=1

E[eαSi + e−αSi |C+

ℓ],

n∑

i=1

E[eαSi + e−αSi |C+

ℓ]}

=

n∑

i=1

E[eαSi + e−αSi|Cℓ+1]

provided we choose ǫℓ+1 to make the last equation hold. But the final expression (6) is
∑n

i=1
W ℓ+1

i .

This proves
∑n

i=1
W ℓ

i ≥
∑n

i=1
W ℓ+1

i . After n steps, we have

n∑

i=1

Pr(Bn
i) ≤ e−α2n

n∑

i=1

Wn
i < 1. (6)

But Bn
i is the probability that |Si| > αn, conditioned on the event Cn. As Cn = {(ǫ1, . . . , ǫn)}

is an elementary event, the probability of any event conditioned on Cn is either 0 or 1. Thus
equation (6) implies that Pr(Bn

i) = 0 for all i. Hence Cn is a solution to the discrepancy problem.

We remark that computing Wi is considered easy because the exponential function ex can be
computed relatively efficiently to any desired degree of accuracy (see Exercise)

Exercises

Exercise 6.1: What is the bit-complexity of Raghavan’s algorithm? Assume that ex (for x in any
fixed interval [a, b]) can be computed to n-bits of relative precision in O(M(n) log n) time
where M(n) is the complexity of binary number multiplication. The inputs numbers aij are
in floating point notation, i.e., aij is represented as a pair (eij , fij) of binary integers so that

aij = 2eij fij

and eij , fij are at most m-bit numbers. ♦

End Exercises

References

[1] N. Alon, J. H. Spencer, and P. Erdös. The probabilistic method. John Wiley and Sons, Inc,
1992.

c© Chee-Keng Yap Basic Version May 6, 2008

