Lecture VII Page 1

Lecture VII
DYNAMIC PROGRAMMING

We introduce an algorithmic paradigm called dynamic programming. It was popularized
by Richard Bellman, circa 1954. The word “programming” here is the same term as found in
“linear programming”, and has the connotation of a systematic method for solving problems. The
term is even identified! with the filling-in of entries in a table. The semantic shift from this to our
contemporary understanding of the word “programming” is an indication of the progress in the
field of computation.

In this chapter, we introduce dynamic programming techniques on several string problems,
abstract polygon triangulation problems, and the problem of optimal binary search trees.

1. Divide and Conquer with a twist. Dynamic programming is a form of divide-and-
conquer because it is based on solving subproblems. But it has some rather distinctive features. A
simple illustration is the problem of computing the Fibonacci numbers, F'(n) = F(n—1)4+F(n—2).
On input n, the obvious recursive algorithm calls itself twice on the arguments n—1 and n—2. The
returned results are added together. The running time has recurrence T'(n) = T(n—1)+T(n—2)+1.
Thus T'(n) is exponential (cf. §II1.6, AVL trees). A little reflection shows that linear time suffices:
instead of computing F'(n), let us define a new function Fy(n) that computes a pair of consecutive
Fibonacci numbers (F(n), F(n — 1)). Then we only need one recursive call to F5 on the argument
n—1:

FQ(TL)Z
if (n=1), return(1,0) a4 Assume input n is > 1
(a,b) «— Fy(n—1) Q4 Recursive call!
return(a + b, a)

The running time recurrence is now Tz(n) = To(n—1)+1 = n. Here we see the seed of the dynamic
programming idea — that by keeping around solutions to several subproblems, we can avoid what
would otherwise be an exponential complexity. Fibonacci, as such, is not typical because it needs
only a constant number (i.e., two) subproblems. We next consider a more typical situation.

2. Joy Ride, again. Recall the joy ride or linear bin packing problem in Chapter V. The
input a queue of riders whose weights are wy,...,w,. We want to place these riders into cars,
each with a weight capacity of M. We wish to place riders into cars in their queue order, while
minimizing the number of cars. The new twist is that we allow negative weights (clearly our joy
ride interpretation is stretched by this generalization). In any case, the greedy algorithm breaks
down. For instance let M = 5 and w = (4,2, —4,5). The greedy solution has two cars (4), (2, —4,5)
but the optimal solution uses only one.

We will now give an O(n?) solution. But first, we must generalize the problem so that, instead
of just solving the instance P, = (wy,...,w,), we simultaneously solve the subproblem instances
P, = (wy,...,w;) foralli=1,...,n. Let b; be the minimum number of cars for instance P;. Now

ISuch tables are sometimes filled out by deploying a row of human operators, each assigned to filling in some
specific table entries and to pass on the partially-filled table to the next person.

(© Chee-Keng Yap Basic Version April 16, 2008

Ha, nega-
tive weights
are children
with helium
balloons!

Lecture VII Page 2

the last car for instance P, has the form (w;,...,w,) for some i and w; + w;41 + -+ + w, < M.
It is now easy to see that
n
by =1+ min{b; : > _w; < M}. (1)
Jj=t
Since by, ...,b,—1 is known, this formula shows that we can compute b,, in O(n) time. We leave

the correctness proof to the reader. To be explicit, we program this solution follows:

LINEAR BIN PACKING WITH NEGATIVE WEIGHTS:
Input: array w[l..n] containing weights and M
Output: array b[1..n] to store the values of optimal values b;

b[1] — 1.
fori=1,...,n
W — wli]
bli] « oo
forj=¢—1,...,1
W+ = ulj]

if (W < M) b[i] — min {b[i], 1+ b[j]}

The overall complexity is T'(n) = T'(n — 1) + n = O(n?).

For instance, suppose M =5 and w = (1,5,—2,5,1) Then b = 1 (obviously), by = 2, b = 2
and by = 3. Le us compute b5 using the formula (?7?):

This example is typical of dynamic programming: in order to solve a problem instance P,,, we
solve a polynomial number of subproblems (in this case n subproblems). In contrast, the Master
recurrence handles a bounded number of subproblem instances.

3. From Google to Genomics. Dynamic programming is particularly effective for problems
that have some underlying linear structure such strings. So many examples in this chapter involve
strings. Currently, there are two major consumers of string algorithms: search engines such as
Google, and computational biology. Thus, if you ask Google to search the word strnigs, it will
ask if you meant strings. You can be sure that a slew of string algorithms are at work behind
this innocent response. When I search for cgtaatcc, Google asked if I meant ccgtcc. It turns
out that CCGTCC.com is the homepage for members of Casino Chip & Gaming Token Collectors
Club. But a biologist might submit such a sequence to a database engine to find the closest match.
This is because in computational genomics, a DNA sequence is just a string over the symbols
A,C,T,G. The strings in Google and genomics have different characteristics: Google strings are
words or phrases — these are much shorter than strings in biology which represent DNA or RNA
sequences whose lengths go into millions. Google strings have medium size alphabets while strings
in genomics have small alphabet (size 4). The corresponding algorithms should try to exploit such
properties.

Let us fix some common terminology for strings. An alphabet is just a finite set 3; its elements
are called letters (or characters or symbols). A string (or word) is just a finite sequence of letters.
The set of strings over X is denoted ¥X*. Let X = xjx9---x,, be a string where z; € ¥. The
length of X is m, denoted |X|. The empty string is denoted e and it has length |¢| = 0. The
ith letter of X is denoted X[i| = a; (i = 1,...,m). Concatenation of two strings X, Y is indicated
by juxtaposition, XY. Thus |XY| = |X|+|Y].

(© Chee-Keng Yap Basic Version April 16, 2008

§1. LoNGEST COMMON SUBSEQUENCE Lecture VII Page 3

81. Longest Common Subsequence

Many string problems come down to comparing two strings for similarity. We look at one such
similarity measure. A subsequence Z = zyz5--- 2z of X = x1,...,x,, is a string such that for
some

1<y <ig < <1p <m

we have Z[¢] = X[ig] for all £ = 1,...,k. For example, 1n, 1g and log are subsequences of the
string long.

A common subsequence of X,Y is a string Z = 2129 - 2, that is a subsequence of both
X and Y. We call Z a longest common subsequence if its length |Z| = k is maximum
among all common subsequences of X and Y. Since the longest common subsequence may not be
unique, let LCS(X,Y') denote the set of longest common subsequences of X, Y. Also, let lcs(X,Y)
denote? any element of LCS(X,Y): so les(X,Y) € LOS(X,Y). Define the numerical functions
L(X,Y) = |les(X,Y)| and M(X,Y) := |LS(X,Y)|. Note that A\(X,Y) > 1 since “at worst”,
LCS(X,Y) is the singleton comprising the empty string e.

For example, if
X = longest, Y = length (2)

then LCS(X,Y) = {Ingt}, A(X,Y) =1 and L(X,Y) = 4.

Of course, the ultimate in similarity under LCS measure is when L(X,Y) = min {|X|,|Y]}.
We also mention the related concept of “substring”. A subsequence Z is a substring of X if
X =Z'ZZ" for some strings Z’', Z". For instance, on and g are substrings of long but 1n, 1g and
log are not. Thus, substrings are subsequences but the converse may not hold.

4. Versions of LCS. There are several versions of the longest common subsequence
(LCS) problem. Given two strings

X=z122 T, Y =192 Yn,

the problem is to compute (respectively) one of the following:

e (Length version) Compute L(X,Y)
e.g., L(longest,length) = 4.

e (Instance version) Compute lcs(X,Y)
e.g., lcs(longest, length) = 1ngt.

e (Cardinality version) Compute A(X,Y")
e.g., A(longest, length) = 1.

e (Set version) Compute LCS(X,Y)
e.g., LC'S(longest,length) = {1ngt}.

We will mainly focus on the first two versions. The last version can be exponential if members of the
set LOS(X,Y) are explicitly written out; we may prefer some reasonably explicit® representation
of LCS(X,Y). We will consider representations of LC'S(X,Y") below.

280 les(X,Y) is not really a functional notation.

3We can interpret “reasonably explicit” to mean that we can confirm membership in LOS(X,Y) in linear time,
or enumerate the members of LCS(X,Y) in an efficient manner. Of course, the pair (X,Y) itself is an implicit
representation of LOS(X,Y’), but it would fail our “reasonableness” test.

(© Chee-Keng Yap Basic Version April 16, 2008

§1. LoNGEST COMMON SUBSEQUENCE Lecture VII Page 4

A brute force solution to the length version of the LCS problem would be to list all subsequences
of length ¢ (for £ =m,m —1,m —2,...,2,1) of X, and for each subsequence to check if it is also
a subsequence of Y. This is an exponential algorithm since X has 2™ subsequences. But can
|LCS(X,Y)| be truly exponential? Here is an example: let

X, =01a0la0la...= (0la)", Y,, = 10al0al0a. .. = (10a)". (3)

Then |L(X,,Y,)| = 2n (Exercise). Moreover, |[LCS(X,,Y,)| > 2" since in each 01-block of X,
we have 2 choices for matching the corresponding 10-block of Y,,. This gives us 2" distinct LCS’s.

5. Dynamic Programming Solution for LCS. The following is a crucial observation. Let
us write X’ for the prefix of X obtained by dropping the last symbol of X. This notation assumes
|X| > 0 so that |X'| = |X|— 1. It is easy to verify the following formula for L(X,Y):

0 if mn=0
LIX,Y)={ 1+ L(X"Y") if T =yn (4)
maX{L(X/v Y)7 L(Xa Y/)} lf Lm 3& Yn

There is a subtlety in this formula when ., = y,. The “obvious” formula for this case is
L(X,Y) = max{1 + L(X",Y"), L(X',Y),L(X,Y")}.
The right hand side is simplified to the form in (1) because of
LX) Y)<1+L(X'Y'),

and also a similar inequality involving L(X,Y”). Formula (1) constitutes the “dynamic program-
ming principle” for the LCS problem — it expresses the solution for inputs of size N = |X| + |Y|
in terms of the solution for inputs of sizes < N — 1. We will discuss the dynamic programming
principle in §4.

For any string X and natural number ¢ > 0, let X; denote the prefix of X of length ¢ (if i > | X/,
let X; = X). The dynamic programming principle for L(X,Y") suggests the following collection of
subproblem instances:

L(X;,Y;), (i=0,...,m;j=0,...,n).

There are O(mn) such subproblems. Note that Xy is the empty string €, so that

LOS(Xo,Yj) = {e}, L(Xo,Y;) = 0. ()

There are dynamic principles for les(X,Y) and LCS(X,Y) that are analogous to (1). Here we
treat LCS(X,Y), leaving les(X,Y) as an exercise.

{e} if mn=0
LCS(X", Y)am if T =yn, LX) Y)> max{L(
LCS(X',Y')zm ULCS(X',Y) if 2 =yn, L(X,Y)=L(X'

LOS(X.y) = | LOS(XY e ULCS(X,Y) if 2 =y, L(X,Y)=L(X, Y’

7 LCS(X',Y")y ULCS(X,Y')ULCS(X',Y) if @m =yn, L(X,Y)=L(X,Y’

LCS(X',Y) if T #yn, L(X'Y)>L(X,Y'
LOS(X,Y") if 2 Ay L(X,Y') > L(XY)
LOS(X,Y')ULCS(X',Y) if @ #yn, L(X,Y') = L(XY).

(© Chee-Keng Yap Basic Version April 16, 2008

Y), L

L(X,Y
L(X
L(X

(X, Y")}

)

LY)

==

§1. LoNGEST COMMON SUBSEQUENCE Lecture VII Page 5

Simplification: The student should compare Equations (1) and (2) to see
the relative simplicity of the former equation. Also the recurrence (2) tells
us that the flow of control in the algorithm for LC'S(X,Y) is determined by
the function L(X,Y’). In particular, we need to compute L(X,Y) if we want
to compute LC'S(X,Y). In fact, equations (1) and (2) share a common flow
of control, with some refinements for LC'S(X,Y). Our general strategy then
is to develop an algorithm for L(X,Y") first. Then we indicate the necessary
modifications to yield an algorithm for LC'S(X,Y"). This modification is usually
straightforward although we will see exceptions.

Here is the dynamic programming solution for L(X,Y"). The algorithm sets up an (1 +m) x
(1 + n) matrix L[0..m,0..n] where L[i, j] is to store the value L(X;,Y;). We fill in the entries of
this matrix as follows. First fill in the Oth column and Oth row with zeros, as noted in (1). Now
fill in successive rows, from left to right, using equation (1) above.

In illustration, we extend® the example (1) to the strings X = lengthen and Y = elongate:

L [ef1fofn]| & Jalt| e |
0J0]0]0] 0 [0]0

14z

u
v | maz(u,v)

B|lOo [Pt |B|O|H
[ev)] Hen) Hen) New) Hev] Nev) Nev] Nev) Has]

We illustrate the formula (2) in action in two entries: the entry corresponding to the ‘g’-row
and ‘g’-column is filled with 1 + = where = is the entry in the previous row and column. The
entry corresponding to last row and last column is max(u,v) where u and v are the two adjacent
entries. [It turns out that x = 2,u = 5,v = 4.] The reader may verify that L(X,Y) = 5 and
LCS(X,Y) = {1ngte, engte} in this example. We leave as an exercise to program this algorithm
in your favorite language.

6. Complexity Analysis. FEach entry is filled in constant time. Thus the overall time com-
plexity is ©(mn). The space is also ©(mn).

7. Optimal Instance or Set Computation. We said that it should be relatively easy to
modify the code for computing L(X,Y) to compute either lcs(X,Y) or some representation of
LCS(X,Y). We use this observation: each entry L[i, j] derives its values from one of the values in
L[i—1,4],L[i,j—1],L[i—1,j—1]. We us modify L into a digraph G which represents LC'S(X,Y):
the nodes of G are (i,5) € {0,1,...,m} x{0,1,...,n}. For each (i, j), we have an edge to (i — 1, j)
(vesp., (i, — 1)) if L[i, j] = L[i — 1, 4] (vesp., L[i,j] = L[i,j — 1]). We also have an edge from (3, j)
to (i —1,5—1) iff z; = y;. Next, we can prune G so that only vertices and edges that lie in a path
from (m,n) to (0,0) are kept. Now, given any Z, we can check if Z € LCS(X,Y) in O(m + n)
time in the obvious manner.

4No pun in-tended.

(© Chee-Keng Yap Basic Version April 16, 2008

§1. LoNGEST COMMON SUBSEQUENCE Lecture VII Page 6

98. Small Space Solution. The above algorithm uses O(mn) space. For Google applications,
this may be acceptable; in computational genomics, this is not. We note that to fill in any row,
we just need the values from two rows. In fact the space for one row is all that we need: as new
entries are filled in, it can overwrite the corresponding entry of the previous row. Since a row has
n entries, we just need O(n) space. As rows and columns are interchangeable, we can also work
with columns, so O(min {m,n}) space suffices.

9. Backwards Equation. We exploit another symmetry in strings. We had been developing
our equations using prefixes of X and Y. We could have equally worked with suffixes. If X#
denote the suffix of X obtained by omitting the first letter, then the analogue of (1) is:

0 if mn=20
L(X,Y)={ 1+ L(X# Y#) if 71 =y (7)
max{L(X7,Y),L(X,Y#)} if x1 #y

Let X' denote the suffix of X length i, so | X¢| = i. If we use the same matrix L as before, we now
need to fill in the entries in reverse order as follows:

Let L[i, j] denote L(X™~% Y"=J]. Thus, we could fill in the last row and last column with 0’s
immediately. If we work in row order, we can next fill in row ¢ — 1 using (1), assuming row i is
already filled in. The final entry to be filled in, L[0, 0], contains our answer L(X,Y").

910. Recovery of Optimal Instance in Small Space. Now we address the possibility of
computing les(X,Y) in small space. Note that the small space solution for L(X,Y) does not
easily extend to recovery of an optimal instance lcs(X,Y). The solution to this problem requires
an interesting divide-and-conquer from Hirshberg (1975).

For simplicity, assume that n is a power of two. Observe that

L(X,Y) = L(Xi+, Yy 0) + L(X™7,Y/2) 8)
for some ¢* =0, ..., m. Indeed,
L(X,Y) = max {L(Xl-, Yo/0) + L(X™ Y"/2)} : 9)

How can we compute the i* such that (1) holds? We use the usual (forward) recurrence to compute
{L(Xi,Yy2):i=0,...,m}.
We use the backward recurrence (1) to compute
{L(Xm*i,Y”/Q) i=0,... ,m}.

This takes O(m) space and O(mn) time. Then using (1), we can determine ¢ as the value that
maximizes the function L(X;,Y,, /) + L(X™™%, Y"/2).

Knowing the i in (1), we could divide our lcs problem recursively into two subproblems. The
key observation is that (1) can be extended into an equation for the optimal instance:

¢ it L(X,Y) =0,
les(X,Y) =< Y1) if n=1and L(X,Y)=1,
1es(Xy, Yy 0)iles(X™HY™2) if n>2and L(X,Y) = L(X;, Y, 2) + L(X™8,Y™V/2).

(10)

(© Chee-Keng Yap Basic Version April 16, 2008

§1. LoNGEST COMMON SUBSEQUENCE Lecture VII Page 7

where “;” denotes concatenation of strings.

The space complexity of this solution is easily shown to be O(m). What about the time
complexity? We have
T(m,n)=T(i,n/2)+T(m —i,n/2) + mn.

It is easy to verify by induction that T'(m,n) < 2mn: if n = 1, this is true. Otherwise,

T(m,n) = T(@,n/2)+T(m—1i,n/2)+ mn
< 2(ig)+2((m—i)g)+mn
= 2mmn.

€11. Other Improvements. We can exploit knowledge about the alphabet. For instance,
Paterson and Masek gives an algorithm with ©(mn/log(min(m,n))) time when the alphabet of
the strings is bounded.

Our algorithm fill in the entries of the matrix L in a bottom-up fashion. We can also fill them in
a top-down fashion. Namely, we begin by trying to fill the entry L[m,n|. There are 2 possibilities:
(i) If 2, = yn, we must recursively fill in L[m — 1,n — 1] and then use this value to fill in L[m,n].
(ii) Otherwise, we must recursively fill in L{m — 1, n] and L[m,n — 1] first. In general, while trying
to fill in L[4, j] we must first check if the entry is already filled in (why?). If so, we can return the
value at once. Clearly, this approach may lead to much fewer than mn entries being looked at.
We leave the details to an exercise.

€12. Applications. Computational problems on strings has been studied since the early days
of computer science. One motivation is their application in text editors. For instance, the problem
of finding a pattern in a larger string is a basic task in text editors. Another interesting application
is in computer virus detection. The growth of the world wide web has been accompanied by the
proliferation of computer viruses. It turns out that a virus trying to infect a computer will send
messages X which are similar to a string Y peculiar to that virus. By computing L(X,Y), we can
measure how likely is the messages X coming from a Y-virus. See Exercise below.

The advent of computational genomics in the 1990’s has brought new attention to problems
on strings. We need to recall that the fundamental unit of study here is the DNA, where a DNA
can be regarded as a string over an alphabet of four letters: A, C, G, T. These corresponds to the
four bases: adenine, cytosine, guanine and thymine. DNA’s can be used to identify species as well
as individuals. More generally, the variations across species can be used as a basis for measuring
their genetic similarity. The LCS problem is one of many that has been formulated to measure
similarity. We will see another formulation in the next section. Hirschberg’s space-efficient LCS
algorithm is from [?]; see [2] for recent work on space efficient dynamic programming especially for
geometric problems.

EXERCISES

Exercise 1.1: Find the set LCS(X,Y) where
X =00110011, Y =10100101.

Show your working (the matrix) and justify your method of extracting the longest common
subsequences. &

(© Chee-Keng Yap Basic Version April 16, 2008

§1. LoNGEST COMMON SUBSEQUENCE Lecture VII Page 8

Exercise 1.2: Compute L(X,Y) where X = lengthening and Y = elongation. O
Exercise 1.3: Compute LCS(X,Y) for X = AATTCCCCGACTGCAATTCACGCACC and Y =
GGCTTTTATTCTCCCTGTAAGT. These are parts of DNA sequences from a modern human and a
Neanderthal, respectively. &

Exercise 1.4:
(a) Give a direct recursive algorithm for computing L(X,Y) based on equation (1) and show
that it takes exponential time. (In other words, equation (1) alone does not ensure efficiency
of solution.)
(b) Let les(X,Y) denote any member of LCS(X,Y). Give the analogue of (2) for les(X,Y).

O

Exercise 1.5: (V.Sharma and Yap) Consider the example in (1).
(a) Compute L(Xs,Ys) by filling in the the usual matrix. Moreover, determine |LC'S(X2, Y3)]
by counting the number of maximum paths in the matrix.
(b) Prove that L(X,,Y,) = 2n. HINT: use induction on n.
(¢) We indicated that |LC'S(X,,Y,)| > 2. But prove that |[LCS(X,,Y,)| > V6 (assume
n is even). HINT: |LCS(X2,Y3)| = 6.
(d) Generalize the idea of (c¢) to prove larger lower bounds on |LCS(X,, Y,)|- &

Exercise 1.6: Let S = {Xi,..., X} be a set of strings. A string Z such that each X; is a
subsequence of Z is called a superstring of S. We can consider the corresponding “shortest
superstring problem” for any given S. In some sense, this is the dual of the LCS problem.
Is there a dynamic programming solution for the shortest superstring problem? O

Exercise 1.7: Joe Quick observed that the recurrence (1) for computing L(X,Y") would work just
as well if we look at suffixes of X, Y (i.e., by omitting prefixes). On further reflection, Joe
concluded that we could double the speed of our algorithm if we work from both ends of our
strings! That is, for 0 <i < j, let X; ; denote the substring x;x;41 - xj—12;. Similarly for
Y ¢ where 0 < k < £. Derive an equation corresponding to (1) and describe the corresponding
algorithm. Perform an analysis of your new algorithm, to confirm and or reject the Quick
Hypothesis. &

Exercise 1.8: What are the forbidden configurations in the matrix M7 For instance, we have the
following constraints: 0 < M[i,j] — M[i—1,7] <1 and 0 < M[i,j] — M[i,j — 1] < 1. Also,
Mli,jl= M[i—1,j] = M[i,j—1] = M[i—1, j— 1] is impossible. Note that these constraints
are based only on adjacency matrix entries. Is it possible to exactly characterize the set of
all allowable configurations of M based on such adjacency constraints? &

Exercise 1.9:
(a) Write the code in your favorite programming language to fill the above table for L(X,Y).
(b) Modify the code so that the program retrieves some member of LCS(X,Y).
(¢) Modify (b) so that the program also reports whether |[LC'S(X,Y)| > 1. Remember that
we do not count duplicates in LCS(X,Y). &

Exercise 1.10: Let X,Y be strings.
(a) Prove that L(XX,Y) < 2L(X,Y).

(© Chee-Keng Yap Basic Version April 16, 2008

§1. LoNGEST COMMON SUBSEQUENCE Lecture VII Page 9

(b) Give an example where the inequality is strict. the best possible.
(¢) Prove that L(X X,YY) < 3L(X,Y). How tight is this upper bound? &

Exercise 1.11: Suppose we have a parallel computer with unlimited number of processors.
(a) How many parallel steps would you need to solve the L(X,Y’) problem using our recur-
rence (1)?
(b) Give a solution to Joe Quick’s idea (previous exercise) of having an algorithm that runs
twice as fast on our parallel computer. Hint: work the last two symbols of each input string
X,Y in one step. &

Exercise 1.12: Let A\(X,Y") denote size of the set LCS(X,Y) and A\(m,n) be the maximum of
AMX,Y) when | X| =m,|Y]| = n. Finally let A(n) = A(n,n).
(a) Compute A(n) for n =1,2,3,4.
(b) Give upper and lower bounds for A(n). &

Exercise 1.13: Let LCS’(X,Y") be the multiset of all the longest common subsequences of X and
Y. That is, for each longest common subsequence Z € LCS(X,Y"), we say Z has multiplicity
k¢ where Z occurs k (resp., £) times as a subsequence of X (resp., Y). Let X' (n,m) and X' (n)
be defined as in the previous exercise. Re-do the previous exercise for X' (n). &

Exercise 1.14: Modify the algorithm for L(X,Y") to compute the following functions:
(a) N(X,Y)
(b) MX,Y) o

Exercise 1.15: Instead of the bottom-up filling of tables, let us do a recursive top-down approach.
That is, we begin by trying to fill in the entry L[m,n]. If x,, = y,, we recursively try to fill
in the entries for L[m — 1,n — 1]; otherwise, recursively solve for L{m — 1,n] and L[m,n — 1].
Can you quantify the improvements in this approach? &

Exercise 1.16: (a) Solve the problem of computing the length L(X,Y, Z) of the longest common
subsequence of three strings X,Y, Z.
(b) What can you say about the complexity of the further generalization to computing
L(Xy,...,X.) (for m > 3). o

Exercise 1.17: A common subsequence of X, Y is said to be maximal if it is not the proper sub-
sequence of another common subsequence of X, Y. For example, let is a maximal subsequence
of longest and length. Let LCS*(X,Y’) denotes the set of maximal common subsequences
of X and Y. Design an algorithm to compute LC'S*(X,Y). &

Exercise 1.18:

(20 Points) Researchers are using LCS computation to fight computer viruses. A virus that is
attacking a machine has a predictable pattern of messages it sends to the machine. We view
the concatenation of all these messages that a potential virus sends as a single string. Call
the first 1000 bytes than from any source (i.e., potential virus) the signature of that source.
Let X be the signature of an unknown source and Y is the signature of a known virus. To
test the source is the Y-virus, we compute L(X,Y’). Empirically, suppose it is shown that if

(© Chee-Keng Yap Basic Version April 16, 2008

§2. EDIT DISTANCE Lecture VII Page 10

L(X,Y) > 500, then that our source is likely to be Y-virus.

(a) Design a practical and efficient algorithm for the decision problem L(X,Y,k) which
outputs “PROBABLY VIRUS” if L(X,Y) > k and “PROBABLY NOT VIRUS” otherwise.
Give the pseudo-code for an efficient practical algorithm. NOTE: The obvious algorithm is to
use the standard algorithm to compute L(X,Y") and then compare n to k. But we want you
to do better than this. HINT: There are two ideas we want you to exploit — most students
only think of one idea.

(b) Quantify the complexity of your algorithm, and compare its performance to the obvious
algorithm (which first computes L(X,Y")). First do your analysis using the general complexity
parameters of m = | X|,n = |Y| and k, and also £ = L(X,Y). Also discuss this for the special
case of m =mn = 1000 and k£ = 500. &

Exercise 1.19: A Davenport-Schinzel sequence on n symbols (or, n-sequence for short) is
astring X = 21,...,2 € {ay,..., an}* such that z; # x;41. The order of X is the smallest
integer k such that there does not exist a subsequence of length & + 2 of the form

A;A;Q;Q;5 -+ A Q5 Q; or ;A;A045 - ;A5G4

where a; and a; alternate and a; # a;. Define A\gx(n) to be the maximum length of a n-
sequence of order at most k.
(a) Show that A;(n) =n and A2(n) = 2n — 1. NOTE: for an order 2 string, a symbol may n

times.
(b) Suppose X is an n-sequence of order 3 in which a,, appears at most A\3(n)/n times. After
erasing all occurrences of a,,, we may have to erase occurrences a; (i =1,...,n — 1) in case

two copies of a; becomes adjacent. We erase as few of these a;’s as necessary so that the
result X’ is a (n — 1)-sequence. Show that | X| — |X'| < A3(n)/n + 2.

(¢c) Show that Az(n) = O(nlogn) by solving a recurrence for A3(n) implied by (b).

(d) Give an algorithm to determine the order of an n-sequence. Bound the complexity T'(n, k)
of your algorithm where n is the length input sequence and k£ < n the number of symbols.

O

Exercise 1.20: Consider the generalization of LCS in which we want to compute the LCS for any
input set of strings.
(a) If the input set have bounded size, give a polynomial time solution.
(b) (Maier, 1978) If the input set is unbounded, show that the problem is N P-complete.

END EXERCISES

§2. Edit Distance

We now consider another problem on strings called the edit distance problem. The termi-
nology comes from the general area of text editing in modern computing, but one could also give
this a computational biology interpretation. Intuitively, the edit distance D(X,Y") between X and
Y is the minimum cost to edit X so that it turns into Y. Assuming D(X,Y)) > 0, the ultimate
in similarity between X and Y is captured by the relation D(X,Y) = 0. Thus, to find a Y in a
database of strings that is the closest to X, we want to find Y to minimize D(X,Y). In contrast,
using the LCS measure of the last section, we would want to find Y which maximize L(X,Y). We
will explore some connection between D(X,Y) and L(X,Y) below.

(© Chee-Keng Yap Basic Version April 16, 2008

§2. EDIT DISTANCE Lecture VII Page 11

As usual, we fix the alphabet . For any index ¢ > 1 and letter a € X, we define the following
editing operations
Ins(i,a), Del(i), Rep(i,a).

These operations, when applied to a string X, will insert the letter a so that it is now in position
i, delete the ith letter, and replace the ith letter by a (respectively). Let

Ins(i,a,X), Del(i,X), Rep(i,a,X) (11)

denote the respective results.

For example, suppose X = aatcga. Then Ins(3,g,X) = aagtcga, Del(5,X) = aatca and
Rep(5,t, X) = aatcta. In general, if Y = Ins(i,a, X), then [Y]| =1+ |X| and

X[j] it j=1,...,i—1
Y[j]={ a it =i
X[j+1 if j=i+1,...,|X|

The other operations can be similarly characterized.

The notations in (1) are unambiguous only when i is in the “proper range”. For insertion, this
means 1 <14 < |X|+ 1, but for deletion and replacement, this means 1 < ¢ < |X|. But when ¢ is
not in the proper range, we may introduce conventions for interpreting (1). The operations Del(z)
and Ins(i,a) are inverses of each other in the following sense:

Del(i, Ins(i,a, X)) = X, Ins(i,b, Del(i, X)), (12)

for some b. Whatever our conventions for handling improper indices, we would want equations
such as (1) to hold.

For simplicity, however, we simply declare such operations to be undefined. In the following,
we will implicitly assume that ¢ is in the proper range whenever we apply these operations.

Let D(X,Y) be the minimum number of editing operations that will transform X to Y. Clearly,
(X = [Y])| < D(X,Y) < max{|X], [V]}. (13)

The triangular inequality holds: for any strings X,Y, Z, it is clear that
D(X,Z)<D(X,Y)+ D, Z). (14)

In fact, D(X,Y) is a metric since it satisfies the usual axioms for a metric:

(i) D(X,Y) > 0 with equality iff X =Y.
(i) D(X,Y) = D(Y, X).

(iif) D(X,Y") satisfies the triangular inequality (1).

€13. An Infinite Edit Distance Graph. It is interesting to view the set ¥* of all strings over
a fixed alphabet ¥ as vertices of an infinite bigraph G(X) in which X,Y € ¥* are connected by
an edge iff there exists an operation of the form (1) that transforms X to Y. Paths in G(X) are
called edit paths. Thus D(X,Y) is the length of the shortest path from X to Y in G(X).

(© Chee-Keng Yap Basic Version April 16, 2008

§2. EDIT DISTANCE Lecture VII Page 12

In analogy to (1), we have the

max{| X|, Y} if mn=0
D(X,Y) = D(X",Y") if X =9yn (15)
1+ min{D(X",Y),D(X,Y"), D(X",Y')} if & # yn

It as a simple exercise to prove the correctness of this formula. It follows that D(X,Y) can also
be computed in O(mn) time by the same technique of filling in entries in an m X n matrix M.

Suppose, we want to actually compute the sequence of D(X,Y") edit operations that convert
X to Y. Again, we expect to annotate the matrix M with some additional information to help us
do this. For this purpose, let us decode equation (1) a little. There are four cases:
(a) In case x,, = yn, the edit operation is a no-op.
(b) If D(X,Y) =1+ D(X',Y), the edit operation is Del(m, X).
(¢) f D(X,Y) =1+ D(X,Y’), the edit operation is Ins(m + 1, y, X).
(d) f D(X,Y) =1+ D(X',Y"), the edit operation is Rep(m, yn, X).
Hence it is enough to store two additional bits per matrix entry to reconstruct one possible sequence
of D(X,Y) edit operation.

What is the relation between L(X,Y) and D(X,Y)? Here are some inequalities:

LEMMA 1. Let X and Y have lengths m and n. Then
DX, Y)<m+n—-2L(X,Y).

and

D(X,Y) > max{m,n} — L(X,Y).

Proof. Upper bound: if Z € LCS(X,Y) then we have D(X,Z) <m — L(X,Y) and D(Z,Y) <
m— L(X,Y), Hence D(X,Y) < D(X,Z)+ D(Z,Y) <m+n—2L(X,Y).

Lower bound: assume m > n, so it suffices to show L(X,Y) > m — D(X,Y). Suppose
we transform X to Y in a sequence of D(X,Y) edit steps. But in D(X,Y’) steps, there is a
subsequence Z of X of length m — D(X,Y) that is unaffected. Hence Z is also a subsequence of
Y, ie., L(X,Y) > |Z| =m — D(X,Y). Q.E.D.

These bounds are essentially the best possible: assume m < n. Then for each positive m/2 <
¢ < m, there are strings X,Y such that D(X,Y) = m + n — 2¢ where L(X,Y) = {. For the lower
bound, for each 0 < ¢ < n, there are strings X,Y such that D(X,Y) = n — . See Exercises.

q14. The Alignment Problem. Let us generalize the editing distance problem. It is motivated
by computational biology where we want to “line up two DNA sequences” to compare them.
Suppose X,Y are two strings. You are allowed to insert, delete and replace, just as before. What
is new is the cost function. The alignment cost function is given by

§: (BU{+})?—R

where * is a symbol not in the alphabet 3. The interpretation is that §(z,y) is the cost to replace
z by y. If © = %, it means inserting y and if y = * it means deleting x. The only requirement
placed on ¢ is symmetry:

6(z,y) = 6(y, o).

This requirement simplifies our discussions below and is natural in all our applications.

(© Chee-Keng Yap Basic Version April 16, 2008

§2. EDIT DISTANCE Lecture VII Page 13

The alignment distance between strings X, Y under this cost function is denoted As(X,Y),
or simply A(X,Y), if ¢ is understood. This can be modeled as the least cost path from X to YV
using appropriate costs for edges of the infinite graph G(X) used in edit distance.

915. Example. Let ¥ ={a,b,c ,..., ,x,y,z} be the letters of the English alphabet. Define

0 if x=x% or y=x,

) 0 if z=y,
O(z,y) = 01 if x,y are both consonants or both vowels, (16)
0y else.

This cost function generalizes the editing distance cost in which we take into account the nature
of letters that cause mismatch. For instance, with the choice

5o =23,61=1,0, =2, (17)

then A(there,their) = 4 since we can replace the last two letters in the first word by their
corresponding letter in the second word. This has cost 4 since using §(r,i) = d(e,r) = 2. There is
no cheaper way to effect this transformation.

916. Example. In the original Needleman-Wunsch (1970) algorithm for alignment, it is assumed
that there is a constant dy > 0 such that §(x,y) = d(x,*) = p for all z,y € X. Call §y the gap
penalty. One way to compute the alignment cost for X,Y is to first inserting *’s so that they
result in strings X' Y’ with the same length. Now we have a “direct pairing” of X' Y’ and
simply add up the replacement cost in a straightforward manner. To give a concrete instance, let
Y ={a,g,c,t} with §(z,y) = —1if 2 = y and d(x,y) = 1 otherwise. Let the gap penalty dy = 2. If
X = cga and Y = acaat, we could first transform X to X’ = *cga* and Y/ =Y. Then the cost
is2—141-142=3. Of course, A(X,Y) is the minimum over all such direct pairings of X’ and
Y’

The introduction of ¢§ is a significant generalization of the edit distance problem in two ways:
first, the cost of each operation depends on the particular letters being operated upon. Second,
we allow negative costs. Here are some reasons why such generalizations make sense:

1. In genomics, one might have a reason to think that the replacement of certain symbols by
others are more likely and hence have a lower cost. Generally, deletions or insertions are
costly.

2. In string editing, we may think of §(v,b) to be less than d(a,b) because in many keyboard
layouts, it is easy confuse the keys for v and b, but less likely to confuse a and b.

3. In the standard text-editing view, it is natural to define 6(a,a) = 0 for a € X. But negative
costs for §(a,a) allows us to give value to positive matches, as opposed to absence of mis-
matches. But imagine that the FBI has a DNA bank containing the DNA sequences collected
at all crime scenes. To correlate these crimes, the FBI wants to compute all pairs of DNA’s
in the bank whose alignment costs are minimum. We would like to ensure, for instance, that

(1) A(cg, cgg) > A(cgataa, cggataa), (18)
(2) A(cg, cc) > A(cgataa, ccataa). (19)

In (1), the pair (cg, cgg) and the pair (cgataa, cggataa) each requires only one deletion
to achieve optimal alignment. But the second pair has many more matches, and we would

(© Chee-Keng Yap Basic Version April 16, 2008

§2. EDIT DISTANCE Lecture VII Page 14

like this to yield a lower alignment cost. Similarly, in (2) the pair (cg,cc) and the pair
(cgataa, ccataa) each requires only a single letter replacement to achieve optimal alignment.
Again, the second pair has many more matches. We can achieve the inequalities (0) if we
define negative costs, a(z,z) < 0 for all z € X.

Let us give a dynamic programming solution. For simplicity, assume that there is a gap panelty
do > 0. With negative costs, it is possible that A(X,Y’) = co (i.e., it has arbitrarily negative cost).
See Exercise. We will assume that this does not happen (e.g., if d¢ is sufficiently large relative to
other costs). For strings X = 1+ 2, Y = y1 - - - Yn, we have the following dynamic programming
principle for alignment:

| (m+n)do if mn=0
A = { LA ¥+ 4KV o)+ A e 20
We can implement this using the usual procedure to fill in the entries of an (m + 1) x (n + 1)
matrix. In the general case, we have:

V)= mmin{8(mm, #) + ACX,Y), 606 yn) + ACX, V), 8(m,ya) + AKX, Y} else
(21)
But see the Exercise for an alternative to (1).

The following fact is often used: suppose X* and Y™ have the same length and are obtained
by inserting *’s into X and Y, respectively. Suppose X* = zix9-- -2y and Y* = yyyo - - - y;. Say
X*,Y* is a valid pair if (z;,y;) # (%, %) for all 4. Define 6*(X*,Y*) to be 3.'_, 6(x;, i), called the
direct alignment cost of X* Y™

LEMMA 2. 0(X,Y) is equal to the minimum of 6*(X*,Y™), over valid pairs (X*,Y™*).

q17. Generalizations. There are many possible generalizations of the above string problems.

e We can introduce costs associated to each type of editing operations. The implicit cost model
above is the unit cost for every operation.

e The fundamental primitive in these problems is the comparison of two letters: is letter
X|[i] equal to letter Y[j] (a “match”) or not (a “non-match”)? We can generalize this by
allowing “approximate” matching (allowing some amount of non-match) or allow generalized
“patterns” (e.g., wild card letters or regular expressions).

e We can also generalize the notion of strings. Thus “multidimensional strings” is just an arrays
of letters, where the array has some fixed dimension. Thus, strings are just 1-dimensional
arrays. It is natural to view 2-dimensional arrays as raster images.

e Another generalization of strings is based on trees. A string tree is a rooted tree T' in
which each node v is labeled with a letter A(v) (from some fixed alphabet). The tree may
be ordered or unordered. In a natural way, T represents a collection (order or unordered) of
strings. Let P and T be two string trees. We say that P is a (string) subtree of T if there
is 1-1 map p from the nodes of P to the nodes of T' such that

— p is label-preserving: v € P and p(v) € T has the same label.

— p is “parent preserving”: if w is the parent of v in P then p(u) is the parent of p(v) in
T. For ordered trees, we further insist that u be order preserving.

(© Chee-Keng Yap Basic Version April 16, 2008

§2. EDIT DISTANCE Lecture VII Page 15

In particular, if vg is the root of P then p(P) is a subtree (in the usual sense of rooted trees)
of T rooted a p(vg). We say there is a “match” at u(vg). Hence a basic problem is, given P
and T, find a match of P in T, if any. Consider the edit distance problem for string trees.
The following edit operations may be considered: (1) Relabeling a node. (2) Inserting a new
child v to a node u, and making some subset of the children of u to be children of v. In the
case of ordered trees, this subset must form a consecutive subsequence of the ordered children
of u. (3) Deleting a child v of a node u. This is the inverse of the insertion operation. We
next assign some cost v to each of these operations, and define the edit distance D(T,T")
between two string trees 7' and 7" to be the miminum cost of a sequence of operations that
transforms T to T’. A natural requirement is hat D(7T,T") is a metric: so, D(T,T’) > 0 with
equality it T =T", D(T,T’) = D(T',T) and the triangular inequality be satisfied.

e Let D = {V7,...,Y,} be a fixed set of strings, called the dictionary. Define A(X,D) =
min{A(X,Y;):i=1,...,n}. We would like to preprocess D so that for any given X, we
can quickly compute the set of words in the dictionary that is closest to X according to the
alignment distance.

Remarks: Levenshtein (1966) introduce the editing metric for strings in the context of binary
codes. Needleman and Wunsch (1970), “A general method applicable to the search for similarities
in the amino acid sequence of two proteins” (J.Mol.Biol., 48(3)443-53), is considered to be the first
application of dynamic programming to biological sequence comparisons. Sankoff and Kruskal
(1983) considered the LCS problem in computational biology applications. Applications of string
tree matching problems arise in term-rewriting systems, logic programming and evolutionary bi-
ology. We refer to the collection in [1] for a state-of-the-art overview, circa 1997.

EXERCISES
Exercise 2.1: Compute the edit distances D(X,Y’) where X,Y are given:
(a) X =00110011 and Y = 10100101.
(b) X = agacgttcgttagca and Y = cgactgctgtatgga. O

Exercise 2.2: Compute the alignment distance between X = google and Y = yahoo using the
alignment cost (1) and (1). For this purpose, assume y is a consonant. Also, express 6(X,Y)
as a direct alignment cost.

&

Exercise 2.3: Suppose we compute optimal alignment A(X,Y") by filling a matrix M[0..m, 0..n)
where |X| = m,|Y| = n. Let M[i,j] be the optimal cost to align X; with Y; where X;
is the prefix of X of length ¢ and similarly for Y;. Assume the alignment cost function of
the previous google-yahoo question. Suppose M|[i, j] = k. What are the possible values for
MTJi — 1,7 — 1] as a function of k? What about M[i — 1,5 + 1] as a function of k7 Justify
your answer. &

Exercise 2.4: Compute A(X,Y) where X,Y are the strings AATTCCCGA and GCATATT. Assume ¢
has gap penalty 2, §(x,2) = —2 and 6(z,y) = 1 if # y. You must organize this computation
systematically as in the LCS problem. &

Exercise 2.5: Prove (1). This is an instructive exercise. &

(© Chee-Keng Yap Basic Version April 16, 2008

§2. EDIT DISTANCE Lecture VII Page 16

Exercise 2.6: Let z,y, z be distinct letters, and 0 < m < n.
(a) Prove that D(X,Y) =m +n — 2{ where m > ¢ >m/2, X = 2™ ‘¢ and Y = 2y~
(b) Let X = 2™ 2% and Y = y"“2* (0 < ¢ < n) Prove that D(X,Y) =n — .. O

Exercise 2.7: Let X,Y be strings. Clearly, L(XX,YY) > 2L(X,Y).
(a) Give an example where the inequality is strict.
(b) Prove that L(X X,Y) < 2L(X,Y) and this is the best possible.
(c) Prove that L(X X,YY) < 3L(X,Y).
(d) We know from (a) and (¢) that L(XX,YY) = ¢L(X,Y) where 2 < ¢ < 3. Give sharper
bounds for c. &

Exercise 2.8: You work for Typing-R-Us, a company that produces smart word processing edi-
tors. When the user mistypes a word, you want to lookup the dictionary for the set of closest
matching words.

(a) Design an alignmment cost function 6 which takes into account the keyboard layout.
Assuming the QWERTY layout, you would like to define §(x,y) to be small when x,y are
close to each other in this layout. Also, row distance is much smaller than column distance.
Assume ¥ ={a,b,c ,..., x,y,z}

(b) Using your ¢ function, compute A(qwerty, quiet) and A(qwerty, quickly). O

Exercise 2.9: We explore the consequence of negative costs in the ¢ function. Can we have
A(X,Y) = —oo? Instead of (1), consider an alternative:

A(X,Y) = min{do+A(X",Y), 60+ A(X,Y"), 8(xm, yn)+AX', Y"),0(a, %)+ A(Xa,Y),(x,b)+A(X, YD), d(a,b)+A(Xa,)

Under what conditions is A(X,Y") well-defined? &

Exercise 2.10: In the text, we describe one way to compute alignment distance: A(X,Y) is just
the minimum of (X', Y”) where X', Y’ are obtained from X,Y by inserting *’s so that they
have the same lengths, and 6(X’,Y”) is defined by summing over the d-cost of each direct

pair in X', Y. Prove that this definition agrees with the dynamic programming definition of
A(X,)Y). O

Exercise 2.11: Let D = {Y3,...,Y,} be a fixed set of strings, called the dictionary. Let
A(X,D) = min{A(X,Y;):i=1,...,n} be the minimum alignment distance between a
string X and any string Y in D. How can you preprocess D so that A(X, D) can be
computed in faster than the obvious method? &

Exercise 2.12: Suppose we allow the operation of transpose, ...ab... — ... ba.... Let T(X,Y)
be the minimum number of operations to convert X to Y, where the operations are the usual
string edit operations plus transpose.

(i) Compute T(X,Y) for the following inputs: (X,Y) = (ab,c), (X,Y) = (abe,¢), (X,Y) =
(ab, ca) and (X,Y) = (abe, ca).

(ii) Show that T(X,Y) > 1 + min{7T(X",Y), T(X,Y"), T (X", Y")}.

(iii) In what sense can you say that T'(X,Y’) cannot be reduced to some simple function of
T(XY),T(X,Y)and T(X',Y')?

(iv) Derive a recursive formula for T'(X,Y). O

(© Chee-Keng Yap Basic Version April 16, 2008

§3. POLYGON TRIANGULATION Lecture VII Page 17

Exercise 2.13: In computational biology applications, there is interest in another kind of edit
operation: namely, you are allowed to reverse a substring: if XY, Z are strings, then we
can transform the XY Z to XY Z in one step where Y ¥ is the reverse of R. Assume that
substring reversal is added to our insert, delete and replace operations. Give an efficent
solution to this version of the edit distance problem. &

END EXERCISES

83. Polygon Triangulation

We now address a different family of problems amenable to the dynamic programming approach.
These problems have an abstract structure that is best explained using the notion of convex
polygons.

The standard notion of a polygon P is a geometric one, and may be represented by a sequence
(vi,...,v,) of vertices where v; € R? is a point in the Euclidean plane. We say P is convex if
no v; in contained in the interior of the triangle A(v;, vy, ve) formed by any other triple of points.
Figure 1 shows a convex polygon with n = 7 vertices. An edge of P is a line segment [v;, v; 1]
between two consecutive vertices (the subscript arithmetic, “i + 17, is modulo n). Thus [v1,v,] is
also an edge. A chord is an line segment [v;,v;] that is not an edge.

1

4

Figure 1: A triangulated 7-gon

€18. Abstract Polygons. We now give an abstract, purely combinatorial version of these
terms. Let P = (v1,...,v,), n > 1, be a sequence of n distinct symbols, called a combinatorial
convex polygon, or an (abstract) n-gon for short. We call each v; a vertex of P. Since the
vertices are merely symbols (only the underlying linear ordering matters), it is often convenient to
identify v; with the integer . In this case, we call (v1,...,v,) = (1,...,n) the standard n-gon.
Henceforth, we assume n > 3 to avoid trivial considerations.

Assume P is a standard n-gon. By a segment of P we mean an ordered pair of vertices, (i, j)
where 1 < i < j < n. This is sometimes written “ij”. We classify a segment ij as an edge of P if
j =1+ 1(mod n); otherwise the segment is called a chord. Thus, 1n is an edge. If n > 3, there
are exactly n edges and n(n — 3)/2 chords (why?). We say two segments ij and k¢ intersect if

1<k<j<t or k<i<l<y;

otherwise they are disjoint. Note that an edge is disjoint from any other segment of P.

(© Chee-Keng Yap Basic Version April 16, 2008

§3. POLYGON TRIANGULATION Lecture VII Page 18

€19. Triangulations. It is not hard to show by induction that a mazimal set T of pairwise
disjoint chords of P has size exactly n — 3. If n > 3, a set T with exactly n — 3 pairwise disjoint
chords is called a triangulation of P. In the following, it is convenient to consider the degenerate
case of a 2-gon; the empty set is, by definition, the unique triangulation of a 2-gon. E.g., figure 1
shows a triangulation

T ={14,24,47,57}

of the standard 7-gon. A triangle of P is a triple (¢, j, k) (or simply, ijk) where 1 < i< j <k <mn;
its three edges are ij, jk and ik. E.g., the set of all triangles of the standard 5-gon are

123,124, 125, 134, 135, 145, 234, 235, 245, 345.

We say ijk belongs to a triangulation 7" if each edge of the triangle is either a chord in 7" or an
edge of P. Thus the triangles of the T" in figure 1 are

{124,234, 147,457, 567}.

Every triangulation 7" has exactly n — 2 triangles belonging to it, and each edge of P appears as
the edge of exactly one triangle and each chord in T" appears as the edge of exactly two triangles
[Check: n — 2 triangles has a combined total of 2(n — 3) + n edges.] In particular, there is a
unique triangle belonging to 7' which contains the edge 1n. This triangle is (1,4,n) for some
i =2,...,n— 1. Then the set T can be partitioned into three disjoint subsets

T=T1WTyWS;

where S; = T N {(1,9),(i,n)}, and Ty1,T> are (respectively) triangulations of the i-gon P =
(1,2,...,4) and the (n — i+ 1)-gon P, = (i, + 1,...,n). Note that S; = {(1,7), (i,n)} iff 2 <i <
n — 1. Also, our convention about the triangulation of 2-gons is assumed when ¢ =2 or i =n — 1.

Thus triangulations can be viewed recursively. This is the key to our ability to decompose
problems based on triangulations. E.g., the triangulation 7" in figure 1 has the partition

T=TiwWTyyS,
where Sy = {14,47}, Ty = {24} and T, = {57}.

920. Weight functions and optimum triangulations. A (triangular) weight function
on n vertices is a non-negative real function W such that W (i, j, k) is defined for each triangle ijk
of an abstract n-gon. The W-cost of a triangulation T is the sum of the weights W (4, j, k) of the
triangles ijk belonging to 7. The optimal triangulation problem asks for a minimum W-cost
triangulation of P, given its weight function W.

I Example: In case P = (v1,...,v,) is a geometric polygon in the plane, a natural cost
function is W (4, j, k) is the perimeter ||v; —v;|| +||vi—vg||+||v; — vk of the triangle (v;, vj, v), where
|| - || denotes the Euclidean length function. It is easy to check that T is optimal iff it minimizes
the sum Z(vi,vj)eT |lv; —vj]| of the lengths of the chords in T'. This might be a reasonable “cost”
if a carpenter has to saw a wooden P into n — 2 triangles. It might also be regarded as the cost of
“disposing of the sawdust”.

In specifying W, we generally expected the “specification size” to be ©(n?). However, in many
applications, the function W is implicitly defined by fewer parameters, typically ©(n) or ©(n?).
Here are some examples.

1. Metric Sawdust Problem: this is a generalization of the “sawdust example”. Suppose
each vertex i of P is associated with a point p; of some metric space. Then W (i,j, k) =
d(pi,p;) + d(pj, px) + d(pk, p;) where d(p, q) is the metric between two points of the space.

(© Chee-Keng Yap Basic Version April 16, 2008

§3. POLYGON TRIANGULATION Lecture VII Page 19

2. Generalized Perimeter Problem: W is defined by a symmetric matrix (aij);szl such
that W (i,4,k) = aij + ajr + aix. We can view a; ; as the “distance” from node ¢ to node
j and W (i, j, k) is thus the perimeter of the triangle ijk. This is another generalization of
“metric sawdust”. Here, W is specified by ©(n?) parameters. More generally, we might have

W (i, j, k) = f(aij, ajk, aix)
where f(-,-,+) is some function.

3. Weight functions induced by vertex weights: W is defined by a sequence (a1, ..., a,)
of objects where

W(iajv k) = f(aiaajaak)'

for some function f(-,-,-). If a; is a number, we can view a; as the weight of the ith vertex.
Two examples are f(x,y,z) = x +y+ 2z (sum) and f(z,y,2) = zyz (product). The case of
product corresponds to the matrix chain product problem studied in §5.

4. Weight functions from differences of vertex weights: W is defined by an increasing
sequence a; < as < -+ < a,, and W (i, j, k) = ar — a;. Note that the index j is not used in
Wi, j,k). In §5, we will see an example (optimum search trees) of such a weight function.

q21. A dynamic programming solution. The cost of the optimal triangulation can be
determined using the following recursive formula: let C'(4,j) be the optimal cost of triangulating
the subpolygon (i,i41,...,j) for 1 <i < j <n. Then

C(i,j) = (22)
mini<k<j{W(i7 ka.]) + C(Za k) + O(kaj)} else.

The desired optimal triangulation has cost C'(1,n). Assuming that the value W (i, j, k) can be
obtained in constant time, and the size of the input is n, it is not hard to implement this outline
to give a cubic time algorithm. We say more about this in the next section.

EXERCISES

Exercise 3.1: Find an optimal triangulation of the abstract pentagon whose weight function W
is parameterized by (a1,...,a¢) = (4,1,3,2,2,3):
(a) The weight function is given by W (i, j, k) = a,a;ja.
(b) The weight function is given by W (i, j, k) = |a; — a;| + |a; — ax| + |a; — ag|. &

Exercise 3.2: Suppose P is a geometric simple polygon, not necessarily convex. We now define
chords of P to comprise those segments that do not intersect the exterior of P. A triangula-
tion is as usual a set of n — 3 chords. Let W be a weight function on the vertices of P. Give
an efficient method for computing the minimum weight triangulation of P. The goal here is
to give a solution that is O(k) where k is the number of chords of P. &

Exercise 3.3: A more profound generalization of triangulation comes from considering the tri-
angulation (tetrahedralization) of convex polytope in 3-dimensions. Now, the number of
tetrahedra is not unique. Give an abstract formulation of this problem. HINT: certain
subsets of the vertices are said to be “convex”. &

(© Chee-Keng Yap Basic Version April 16, 2008

§4. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 20

Exercise 3.4: (T. Shermer) Let P be a simple (geometric) polygon (so it need not be convex).
Define the “bushiness” b(P) of P to be the minimum number of degree 3 vertices in the dual
graph of a triangulation of P. A triangulation is “thin” if it achieves b(P). Give an O(n?)
algorithm for computing a thin triangulation. &

Exercise 3.5: Suppose that we want to maximize the “triangulation cost” (we should really
interpret “cost” as “reward”) for a given weight function W (i, j, k). Does the same dynamic
programming method solve this problem? &

Exercise 3.6: (Multidimensional Dynamic Programming?)

(a) Give a dynamic programming algorithm to optimally partition an n-gon into a collection
of 3- or 4-gons. Assume we are given a non-negative real function W (i, j, k, 1), defined for all
1<i<j<k<Il<nsuchthat [{i,j,k, [} > 3. The value W (4, j, k,1) should depend only on
the set {4, 7, k,1}: if {i,4,k, 1} ={¢', 5/, k', '}, then W (4,5, k, 1) =W, j', k', I"). For example,
W(2,2,4,7) = W(2,4,4,7). The weight of a partitioning is equal to the sum of the weights
over all 3- or 4-gons in the partition. Analyze the running time of your algorithm. NOTE:
this problem has a 2-dimensional structure on its subproblems, but it can be generalized to
any dimensions.

(b) Solve a variant of part (a), namely, the partition should exclusively be composed of 4-gons
when n — 4 is even, and has exactly one 3-gon when n — 4 is odd. &

END EXERCISES

84. The Dynamic Programming Method

Let us note the three ingredients necessary for a successful dynamic programming solution. We
use the triangulation problem for illustration.

e There are a small number of subproblems. We interpret “small” to mean a polynomial
number. In the weight function W on the n-gon (1,...,n), each contiguous subsequence

(yi+1li+2,...,5-14), (1<i<j<n)

induces a weight function W; ; on the (j — ¢ + 1)-gon (4,7 +1,...,7 — 1,7). This gives rise
to the subproblem P, ; of optimal triangulation of (¢,7+1,...,7). The original problem is
just Py ,. There are ©(n?) subproblems. The “wrong” formulation can violate this smallness
requirement (see Exercise).

e An optimal solution of a problem induces optimal solutions on certain subprob-
lems. If T'is an optimal triangulation on (a1, . .., a,), then we have noted that ' = T WT5WS;
where S; C {1i,in} and T1,T» are triangulations of subpolygons of P. In fact, 77,75 are
optimal solutions to subproblems P; ; and F; , for some 1 < ¢ < n. This property is called
the dynamic programming principle, namely, an optimal solution to a problem induces
optimal solutions on certain subproblems.

e The optimal solution of a problem is easily constructed from the optimal solutions
of subproblems. If we have already found the cost of optimal triangulations for all smaller
subproblems of P; ; then we can easily solve P; ; using equation (1).

The reader may verify that the same ingredients were present in the LCS and edit distance prob-
lems.

(© Chee-Keng Yap Basic Version April 16, 2008

§4. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 21

922. Mechanics of the algorithm. To organize the computation embodied in equation (1),
we use an upper triangular n X n matrix A to store the values of C(i,),

Ali, j] = C(1,5), (1<J)

S\ Sx S\ 54\-

See Figure 2.

1 0 C(1,2 C(1,4
2 0 C(23

3 0 C(3,4
4 0

5

1 2 3 4 5

Figure 2: Filling in of a upper triangular matrix

We view the algorithm as a systematic filling in of the matrix A. Note that filling in the
entries Ali, j] can be viewed as solving a subproblem of size (j — i + 1). We proceed in n — 1
stages, where stage S; (t = 2,...,n) corresponds to solving all subproblems of size ¢. There are
exactly n — t + 1 problems of size t. Note that to solve a problem of size t (¢t > 2) we need to
minimize over a set of ¢ — 2 numbers (see equation (1)), and this takes time O(t). Thus stage t
takes O((t — 2)(n —t + 1)) = O(n?) time. Summed over all stages, the time is O(n®). The space
requirement is ©(n?), because of the matrix A.

The algorithm is easy to implement in any conventional programming language: it has a triply-
nested “for-loop”, with the outermost loop-counter controlling the stage number, ¢t. The following
gives a bottom-up implementation of equation (1):

DyNAMIC PROGRAMMING FOR OPTIMAL TRIANGULATION
fort<— 1ton—1 < do problems of size 2
Alt,t+ 1] < 0.
fort—2ton—1 <« t+1 is problem size
fori—1ton—t < compute Cli, i+t
Aliyi+t] — Aliyi+ 1]+ Afi+ 1,0+ t) + W(i,i + 1,0 + 1)
fork—i4+2toi+t—1
Aliy i+ t] «— min{Afi,i + t], A[i, k] + A[k, i + t] + W (i, k,i+)}

The algorithm lends itself to hand simulation, a process that the student should become familiar
with.

In general, we would be filling entries of a rank k tensor (matrices are rank k£ = 2 tensors).

(© Chee-Keng Yap Basic Version April 16, 2008

§4. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 22

It is harder to visualize this process, but in terms a computer algorithm this presents no extra
difficulty: we would just have a (k + 1)-ply nested for-loop.

€23. Splitters and the construction of Optimal Solutions. Suppose we want to find the
actual optimal triangulation, not just its cost. Let us call any index k that minimizes the second
expression on the right-hand side of equation (1) an (7, j)-splitter. If we can keep track of all the
splitters, we can clearly construct the optimal triangulation. For this purpose, we employ an upper
trianguler n X n matrix K where K|[i, j] stores an (i, j)-splitter. It is easy to see that the entry
K[i, j] can be filled in at the same time that A7, 5] is filled in. Hence, finding optimal solutions is
asymptotically the same as finding the cost of optimal solutions.

€24. Top-down versus bottom-up dynamic programming. The above triply nested loop
algorithm is a bottom-up design. However, it is not hard to construct a top-down design recursive
algorithm: simply implement (1) by a recursion. However, it is important to maintain the matri-
ces A (and K if desired) as global shared space. This technique has been called “memo-izing”.
Without memo-izing, the top-down solution can take exponential time, simply because there are
exponentially many subproblems (see next section). A simple memoization does not speed up the
algorithm. But we can, by computing bounds, avoid certain branches of the recursion. This can
have potential speedup — see Exercise.

25. Space-Efficient Solutions. We can usually reduce the space usage by a linear factor
(quadratic to linear, cubic to quadratic, etc). For instance, in the LCS problem, it is sufficient to
keep at most two rows (or two columns) of the matrix in memory. That is because the solution
for row i depends only on the solutions of rows (i — 1) and row i. Indeed, space for only one
row (or column) is already sufficient — as new entries are produced for row 7, they overwrite the
corresponding entries or row ¢ — 1. However, such space efficient solutions are not so easy to
extend into solutions that reconstruct the optimal solutions. For instance, how do we compute a
LCS using O(n) space? To do this, we need a kind of divide and conquer technique: which we
explore in the exercises.

REMARK: The abstract triangulation problem has a “linear structure” on the subproblems.
This linear structure can sometimes be artificially imposed on a problem in order to exploit the
dynamic programming framework (see Exercise on hypercube vertex selection).

EXERCISES

Exercise 4.1: Jane Sharp noted an alternative to equation (1).

(a) Jane observed that every triangulation T' must contain a triangle of the form (z,i+1,i+2).
Such a triangle is called an “ear”. Prove this claim of Jane. (You may also prove the stronger
claim that there are at least two ears.)

(b) Suppose we remove an ear from an n-gon. The result is an (n — 1)-gon. If we knew an
ear which appears in an optimum triangulation of an n-gon, we could recursively triangular
the smaller (n — 1)-gon. But since we do not know, we can try all possible (n — 1)-gons
obtained by removing an ear. What is wrong with this approach? (Try to write the analogue
of equation (1), and think of the 3 ingredients needed for a dynamic programming approach.)

&

(© Chee-Keng Yap Basic Version April 16, 2008

§4. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 23

Exercise 4.2: Consider the linear bin packing problem where the ith item is not a single weight,
but a pair of non-negative weights, (v;, w;). If we put the ith to jth items into a bin, then we
require Y 7 _, v and Y 7 _, wy to be each bounded by M. Again the goal to use the minimum

number of bins. &
Exercise 4.3: Let (no,n1,...,n5) = (2,1,4,1,2,3). We want to multiply a sequence of matrices,
Ay x Ay x -+ x As where A; is n;—1 X n; for each i. Please fill in matrices (a) and (b) in

Figure 3. Then write the optimal order of multiplying A1, ..., 4s.

0 0 0 0
1 0 1 0
2 0 2 0
3 0 3 0
4 0 4 0
5 5
0o 1 2 3 4 5 0o 1 2 3 4 5

b litter Matrix K
(a) Optimum Cost Matrix C' (b) Splitter Matrix

Figure 3: (a) C[i, j] is optimal cost to multiplying 4; x --- x A;. (b) K¢, j] indicates the optimal
split, (As X -+ X Agpi) (Ax(ijl+r X - X Aj)

O

Exercise 4.4: The following problem is motivated by computations in wavelet theory. We are
given three real non-negative coefficients a, b, ¢ and a real function (the “barrier”)

1 if |zl <1
h(z) = { 0 else.

Define the function f(x,i) (where ¢ > 0 is integer) as follows:

_ | =) if i=0
)= a-f2x—1,i—1)+b- f(2x,i—1)+c- f2r+1,i—1) else.

Let f(x) = lim; o f(z,7). We call f(z,7) the i-th approximation to f(z). Assume that each
arithmetic operation takes unit time.

(a) What is f(0), f(1/2) and f(—1/2)?

(b) The function f(z,7) has support contained in the open interval (—1,1) (for fixed 7).

(¢c) Prove that f(x) is well-defined (possibly infinite) for all z.

(d) Determine the time to compute a single value f(x,n) if we implement a straightforward
recursion (each call to f(y,) is independent).

(e) We want an efficient solution for the following problem: given n,m, we want to compute
the values f(i/m,n) for all

fla,i

i €Dy ={-m+1,—m+2,...,-1,01,...,m—2m—1}.

Show that this can be computed in O(mn) time and O(m) space.
(f) Strengthen (e) to show we can compute a single value f(i/m,n) in O(n) time and O(1)
space. ¢

(© Chee-Keng Yap Basic Version April 16, 2008

§4. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 24

Exercise 4.5: (Recursive Dynamic Programming) The “bottom-up” solution of the optimal tri-
angulation problem is represented by a triply-nested for-loop in the text. Now we want to
consider a “top-down” solution, by using recursion. As usual, the weight W (4, j, k) is easily
computed for any 1 <i < j <k <n.

(a) Give a naive recursive algorithm for optimal triangulation. Briefly explain how this al-
gorithm is exponential.

(b) Describe an efficient recursive algorithm. You will need to use some global data structure
for sharing information across subproblems.

(c) Briefly analyze the complexity of your solution.

(d) Does your algorithm ever run faster than the bottom-up implementation? Can you make
it run faster on some inputs? HINT: for subproblem P(i,j), we can try to compute upper
and lower bounds on C(i, j). Use this to “prune” the search. &

Exercise 4.6: Give a linear space O(n) solution to problem of optimal triangulation. Write the
recurrence for the space and time complexity of your algorithm. Solve for the running time.

O

Exercise 4.7: Consider the problem of evaluating the determinant of an n x n matrix. The
obvious co-factor expansion takes ©(n - n!) arithmetic operations. Gaussian elimination
takes ©(n?). But for small n and under certain circumstances, the co-factor method may be
better. In this question, we want you to improve the co-factor expansion method by using
dynamic programming. What is the number of arithmetic operations if you use dynamic
programming? Please illustrate your result for n = 3.

HINT: We suggest you just count the number of multiplications. Then argue separately that

the number of additions is of the same order. &
Exercise 4.8: Generalize the previous exercise. Let the set of real constants {a; : i = =N, —N +
1,...,=1,0,1,..., N} be fixed. Suppose that

h(x) if =0

f(x,i) = { SN i fRr—1,i—1) else.

Re-do parts (a)—(c) in the last exercise. O

Exercise 4.9: (Hypercube vertex selection) A hypercube or n-cube is the set H, = {0,1}".
Each = (z1,...,2,) € H, is called a vertex of the hypercube. Let 7 = (71,...,m,) and
p = (p1,...,pn) be two positive integer vectors. The price and reliability of a vertex z
is given by 7(x) = i, #;m and p(x) = [[;_,,,,_, pi- The hypercube vertex selection
problem is this: given 7, p and a positive bound By, find € H,, which maximizes p(x)
subject to 7(z) < Bp. Solve this problem in time O(nBy) (not O(nlog By)).
HINT: View H, = H, ® H,_j for any k =1,...,n— 1 and y ® z denotes concatenation of
vectors y € Hy, z € H,_j. Solve subproblems on Hy and H,_j with varying values of B
(B=1,2,...,Bp). The choice of k is arbitrary, but what is the best choice of k? &

Exercise 4.10: Let S C R? be a set of n points. Partially order the points p = (p.x,p.y) € R? as
follows: p < q iff p.x < g.x and p.y < q.y. If p # ¢ and p < ¢, we write p < ¢q. A point p is
S-minimal if p € S and there does not exist ¢ € S such that ¢ < p. Let min(S) denote the
set of S-minimal points.

(a) For ¢ € R, let S(c) denote the set {pe S:px>c} Eg., let S =

(© Chee-Keng Yap Basic Version April 16, 2008

§4. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 25

,
4+ .
p
3+ e
S
2+ .
q
1+ .

Figure 4: Set of 4 points.

{r(1,3),4q(2,1),7(3,4),s(4,2)} as shown in figure 4. Then min(S(c)) is equal to {p,q}
ife<ly{q}ifl<e<2;{rs}if2<c<3;{s}if 3 <c. Designa data structure D(S) with
two properties:

1. For any ¢ € R (“the query” is specified by ¢), you can use D(S) to output the set
min(S(c)) in time
O(logn + k)

where k is the size of min(S(c)).
2. The data structure D(S) uses O(n) space.
(b) For any ¢ € R?, let S(q) denote the set {p € S :p.x > q.x,p.y > q.y}. Design a data

structure D’(S) such that for any ¢ € R?, you can use D" (S) to output the set min(S(q)) in
time O(logn + k) where k is the size of min(S(q)), and D" (S) uses O(n?) space.

Exercise 4.11: (Knapsack) In this problem, you are given 2n + 1 positive integers,
W,wi,vi(i =1,...,n).

Intuitively, W is the size of your knapsack and there are n items where the ith item has size
w; and value v;. You want to choose a subset of the items of maximum value, subject to
the total size of the selected items being at most W. Precisely, you are to compute a subset
I C{1,...,n} which maximizes the sum

> v
iel

subject to the constraint), w; < W.
(a) Give a dynamic programming solution that runs in time O(nW).
(b) Improve the running time to O(n, min{ W, 2"}). &

Exercise 4.12: (Optimal line breaking) This book (and most technical papers today) is typeset
using Donald Knuth’s computer system known as TEX. This remarkable system produces

(© Chee-Keng Yap Basic Version April 16, 2008

§5. OPTIMAL PARENTHESIZATION Lecture VII Page 26

very high quality output because of its sophisticated algorithms. One such algorithm is the
way in which it breaks a paragraph into individual lines.

A paragraph can be regarded as a sequence of words. Suppose there are n words, and
their lengths are a1, ..., a,. The problem is to break the paragraph into lines, no line having
length more than m. Between 2 words in a line we introduce one space; there is no spaces
after the last word in a line. If a line has length k, then we assess a penalty of m — k on
that line. The penalty for a particular method of breaking up a paragraph is the sum of the
penalty over all lines. The last line of a paragraph, by definition, suffers no penalty.

(a) Consider the obvious greedy method to solve this problem (basically fill in each line until
the next word will cause an overflow). Give an example to show that this does not always
give the minimum penalty solution.

(b) Give a dynamic programming solution to finding the optimal (i.e., minimal penalty)
solution.

(¢) Hlustrate your method with Lincoln’s Gettysburg address, assuming that m = 80. In the
case of a terminal word (which is followed by a full-stop), we consider the full stop as part
of the word.

(d) Suppose we assume that there are 2 spaces separating a full-stop and the following word
(if any) in the line. Modify your solution in (a) to handle this.

(e) Now introduce optional hyphenation into the words. For simplicity, assume that every
word has zero or one potential place for hyphenation (the algorithm is told where this hyphen
can be placed). If an input word of length ¢ can be broken into two half-words of lengths ¢,
and /o, respectively, it is assumed that /1 > 2 and f5 > 1. Furthermore, we must include an
extra unit (for the placement of the hyphen character) in the length of the line that contains
the first half. Can you modify the above algorithm further? O

END EXERCISES

§5. Optimal Parenthesization

We can view a triangulation of an (n+ 1)-gon to be a “parenthesized expression” on n symbols.
Let us clarify this connection.

Let (e1,€e2,...,€e,), n > 1, be a sequence of n symbols. A (fully) parenthesized expression
on (ey,...,e,) is one whose atoms are e; (for i = 1,...,n), each e; occurring exactly once and in
this order left-to-right, and where each matched pair of parenthesis encloses exactly two non-empty
subexpressions. E.g., there are exactly two parenthesized expressions on (1,2, 3):

((12)3), (1(23)).

The reader may verify that there are 5 parenthesized expressions on (1,2,3,4).

A parenthesized expression on (ey,...,e,) corresponds bijectively to a parenthesis tree on
(€1,...,e,). Such a tree is a full® binary tree T' on n leaves, where the ith leaf in symmetric order
is associated with e;. If n = 1, then the tree has only one node. Otherwise, the left and right
subtrees are (respectively) parenthesized expressions on (eq,...,e;) and (e;11,...,e,) for some
1=1,...,n.

There is a slightly more involved bijective correspondence between parenthesis trees on
(e1,...,en) and triangulations of an abstract (n + 1)-gon. See Figure 5 for an illustration. If

5A node of a binary tree is full if it has two children. A binary tree is full if every internal node is full.

(© Chee-Keng Yap Basic Version April 16, 2008

§5. OPTIMAL PARENTHESIZATION Lecture VII Page 27

Vo on

P/ . o/ N
S ?j " ” s
" db

V2

Figure 5: The parenthesis tree and triangulation corresponding to ((ej(ezes))es).

the (n + 1)-gon is (vg,v1,...,vy,), then the edges (v;—1,v;) is mapped to e; (i = 1,...,n) under
this correspondence, but the “distinguished edge” (vo, v,) is not mapped. We leave the details for
an exercise.

If we associate a cost W (4, j, k) for forming a parenthesis of the form “(Ey, E2)” where E; (resp.,
E,) is a parenthesized expression on (e;,...,e;) (resp., (ej+1,...,¢ex), then we may speak of the
cost of a parenthesized expression — it is the same as the cost of the corresponding triangulation
of P. Finding such an optimal parenthesized expression on (e1,...,e,) is clearly equivalent to
finding an optimal triangulation of P.

926. Catalan numbers. It is instructive to count the number P(n) of parenthesis trees on
n > 1 leaves. In the literature, P(n) is also denoted C(n — 1), in which case it is called a Catalan
number. The index n — 1 of the Catalan numbers is the number of pairs of parenthesis needed
to parenthesize n symbols. Here C'(n) = 1,1,2,5 for n = 0,1,2,3. Note that C(0) = 1, not 0. In
general, for n > 1, the following recurrence is evident:

n

C(n) =Y Ci—1)C(n—1-1). (23)

=1

We can interprete C'(n) as the number of binary trees with exactly n nodes (Exercise). In terms
of P(n), we get a similar recurrence:

P(n) = Z P{i)P(n—1—1) (24)

This recurrence has an elegant solution using generating functions (see §VIIL.9),

Clm) = m+r1 (2;11)

() =o (&)

So C(m) = ©(4™m~3/2) grows exponentially and there is no hope to find the optimal parenthesis
tree by enumerating all parenthesis trees.

By Stirling’s approximation,

(© Chee-Keng Yap Basic Version April 16, 2008

§5. OPTIMAL PARENTHESIZATION Lecture VII Page 28

€27. Matrix Chain Product. An instance of the parenthesis problem is the matrix chain
product problem: given a sequence

Ay, A,

of rectangular matrices where A; is a;—1 X a; (i =1,...,n), we want to compute the chain product
A1Ay -+ A,

in the cheapest way. The sequence (ag,aq,...,a,) of numbers is called the dimension of this

chain product expression.

We need to clarify the cost model. Using associativity of matrix products, each method of
computing this product corresponds to a distinct parenthesis tree on (41, ..., A,). For instance,

((A142)A3), (A1(A243))

are the two ways of multiplying 3 matrices. We assume that it costs pgr to multiply a p X ¢ matrix
by a ¢ X r matrix. Hence if the dimension of the chain product Ay A3 Az is (ag, a1, as, ag), the first
method to multiply these three matrices above costs

apaias + apazas = apaz(a + az)
while the second method costs
apai1a3 + a1a2a3 = alag(ao + CLQ).

Letting (ao,...,a3) = (1,d,1,d), these two methods cost 2d and 2d?, respectively. Hence the
second method may be arbitrarily more expensive than the first.

Corresponding to the dimension (ag, . . ., a,) of a chain product instance, we define an triangular
weight function W (i, j, k) for 0 < i < j < k < n to reflect our complexity model:

W(i,j, k) == a;ajag.

This is what we called the “product weight function” in §2. The optimal method of computing a
matrix chain product is reduced to the optimal parenthesis tree problem. We have seen an O(n?)
solution to this problem.

The original problem of matrix chain product can be solved in two stages: first find the optimal
parenthesis tree, based on just the dimension of the chain. Then use the parenthesis tree to order
the actual matrix multiplications. The only creative part of this solution is the determination of
the optimal parenthesization.

Remark: For the product weight function, W(a;, aj,ar) = a;ajax, the optimal triangulation
problem can be solved in O(nlogn) time, using a sophisticated algorithm due to Hu and Shing
[5]. Ramanan [8] gave an exposition of this algorithm, and presented an €(nlogn) lower bound in
an algebraic decision tree.

EXERCISES

Exercise 5.1: Show that C(n) is the number of binary trees on n nodes. HINT: Use the recurrence
(1) and structural induction on the definition of a binary tree. &

Exercise 5.2: Work out the bijective correspondence between triangulations and parenthesis trees
stated above. &

(© Chee-Keng Yap Basic Version April 16, 2008

§6. OPTIMAL BINARY TREES Lecture VII Page 29

Exercise 5.3: Verify by induction that C'(m) has the claimed solution. &

Exercise 5.4: Solve the recurrence (1) for C(n) by using the following observation: consider
generating function

G(l‘)ZZC(i)ZCi=1+$+2$2+5$3+---.
i=0

HINT: What can you say about the coefficient of 2™ in the squared generating function G (z)2??
Write this down as a recurrence equation involving G(x) Solve this quadratic equation.

&

Exercise 5.5: i) Consider an abstract n-gon whose weight function is a product function,

W (i, j, k) = wyw;wy for some sequence ws, ..., w, of non-negative numbers. Call w; the
“weight” of vertex i. Let (mq,m2,...,m,) be a permutation of {1,...,n} such that
Wry Swrm S "'Swwn-

Show that there exists an optimal triangulation T" of P such that vertex m; of least weight
is connected to my and also to w3 in T'. [We say vertex i is connected to j in T if either
ij or ji is in T or is an edge of the n-gon.]

HINT: Use induction on n. Call a vertex i isolated if it is not connected to another vertex
by a chord in T'. Consider two cases, depending on whether 7; is isolated in 7" or not.

ii) (Open) Can you exploit this result to obtain a o(n®) algorithm for the matrix chain
product problem? &

END EXERCISES

86. Optimal Binary Trees

Suppose we store n keys
Ki<Ky<- <K,

in a binary search tree. The probability that a key K to be searched is equal K; is p; > 0, and the
probability that K falls between K; and K1 is ¢g; > 0. Naturally,

In our formulation, we do not restrict the sum of the p’s and ¢’s to be 1, since we can simply
interpret these numbers to be “relative weights”. But we do require the g;, p;’s to be non-negative.

We want to construct an full® binary search tree 7" whose nodes are labeled by

qo,P1,91,P2y- - - s4n—15,Pn;dn (25)

in symmetric order. Note that the p;’s label the internal nodes and g;’s label the leaves.

6This amounts to an extended binary search tree, as described in Lecture 3.

(© Chee-Keng Yap Basic Version April 16, 2008

§6. OPTIMAL BINARY TREES Lecture VII Page 30

[FIGURE]

In a natural way, 1" corresponds to a binary search tree in which the internal nodes are labeled
by K1, ..., K,. But for our purposes, the actual keys K; are irrelevant: only the probabilities p;, g;
are of interest. Each subtree T; ; (1 <1i < j < n) of T corresponds to a binary search tree on the
keys Kj, ..., K;. We define the following weight function:

W(i—-1j) = @Ga+pita+-pj+qg

j
= Q-1+ Z(Qk + pr)
k=i

for all 0 <4 < j <n. Thus W(i,i) = ¢;. The cost of T is given by
C(T) =wW(0,n) + C(T1) + C(Tr)

where T}, and T are the left and right subtrees of T. If T has only one node, then C(T) = 0,
corresponding to the case where the node is labeled by some ¢;. We say T is optimal if its cost is
minimum. So the problem of optimal search trees is that of computing an optimal 7', given the
data in (1). Why is this definition of “cost” reasonable? Let us charge a unit cost to each node we
visit when we lookup a key K. If K has the frequency distribution given by the probabilities p;, g;,
then the expected charge to the root of T is precisely W (i — 1, j) if the leaves of T are K;,. .., K.
So C(T) is the expected cost of looking up K in the search tree T.

q28. Application. In constructing compilers for programming languages, we need a search
structure for looking up if a given identifier K is a key word. Suppose Kji,..., K, are the key
words of our programming language and we have statistics telling us that an identifier K in a
typical program is equal to K; with probability p; and lies between K; and K;;; with probability
gj. One solution to this compiler problem is to construct an optimal search tree for the key words
with these probabilities.

929. Example. Assume that (p1,p2,p3) = (6,1,3) and the ¢;’s are zero. There are 5 possible
search trees here (see figure 6). The optimal search tree has root labeled p;, giving a cost of
6 4+ 2(3) 4+ 3(1) = 15. Note that the structurally “balanced tree” with py at the root has a bigger
cost of 19. Intuitively, we understand why it is better to have p; at the root — it has a much larger
frequency than the other nodes.

(6) m P
. & o

D2 ps3
@ b2

Cost =5 Cost =9

Figure 6: The 5 possible binary search trees on (p1, p2, p3).

Let us observe that the dynamic programming principle holds, i.e., every subtree of T; ;
(1 <1< n) is optimal for its associated relative weights

qi—1,Piy49iy---,495—-1,P5,45-

(© Chee-Keng Yap Basic Version April 16, 2008

§6. OPTIMAL BINARY TREES Lecture VII Page 31

Hence an obvious dynamic programming algorithm can be devised to find optimal search trees in
O(n?) time. Exploiting additional properties of the cost function, Knuth shows this can be done
in O(n?) time. The key to the improvement is due to a general inequality satisfied by the cost
function, first clarified by F. Yao, which we treat next.

EXERCISES

Exercise 6.1: Describe the precise connection between the optimal search tree problem and the
optimal triangularization problem. O

Exercise 6.2: Suppose the input frequencies are (p1,...,p,) (the ¢;’s are all zero). If the p;’s are
distinct, Joe Quick has a suggestion: why not choose the largest p; to be the root? Is this
true for n = 37 Find the smallest n for which this is false, and provide a counter example
for this n.

&

Exercise 6.3: (Project) Collect several programs in your programming language X.

(a) Make a sorted list of all the key words in language X. If there are n key words, construct
a count of the number of occurrences of these key words in your set of programs. Let
P1,P2, - .-, Pn be these frequencies.

(b) Construct an optimum search tree for these key words (assuming ¢;’s are 0) these key
words (assuming ¢;’s are 0).

(¢) Construct from your programs the frequencies that a non-key word falls between the
keywords, and thereby obtain qg, q1, ..., ¢,. Construct an optimum search tree for these p’s
and ¢’s. &

Exercise 6.4: The following class of recurrences was investigated by Fredman [3]:

M(n) = g(n) + _wmin_{ad (k) + BM(n —k— 1)}

where a, § > 0 and g(n) are given. This is clearly related to optimal search trees. We focus

on g(n) = n.

(a) Suppose min{«, 3} < 1. Show that M(n) ~ e

(b) Suppose min{a, 8} > 1, log / log 3 is rational and a~! + 3~ = 1. Then M (n) = ©(n?).
¢

Exercise 6.5: If the p;’s are all zero in the Optimal Search Tree problem, then the optimization
criteria amounts to minimizing the external path length. Recall that the external path length
of a tree whose leaves are weighted is equal to) d(u)w(u) where u ranges over the leaves,
with w(u), d(u) denoting the weight and depth of u. Suppose we consider a modified path
length of a leaf u to be w(u) Z?i%) 27" (instead of d(u)w(u)). Solve the Optimal Search Tree
under this criteria. REMARK: This problem is motivated by the processing of cartographic
maps of the counties in a state. We want to form a hierarchical level-of-detail map of the
state by merging the counties. After the merge of a pair of maps, we always simplify the
result by discarding some details. If the weight of a map is the number of edges or vertices in
its representation, then after a simplification step, we are left with half as many edges. ¢

(© Chee-Keng Yap Basic Version April 16, 2008

§7. WEIGHT MATRICES Lecture VII Page 32

Exercise 6.6: Consider the following generalization of Optimal Binary Trees. We are given a
subdivision of the plane into simply connected regions. Each region has a positive weight.
We want to construct a binary tree T' with these regions as leaves subject to one condition:
each internal node u of T" determines a subregion R,, of the plane, obtained as the union of
all the regions below u. We require R, to be simply-connected. The cost of T is as usual the
external path length (i.e., sum of the weights of each leaf multiplied by its depth).
(a) Show that this problem is N P-complete.
(b) Give provably good heuristics for this problem. &

END EXERCISES

87. Weight Matrices

We reformulate the optimal search tree problem in an abstract framework.

DEFINITION 1. Let n > 2 be an integer. A triangular function W (of order n) is any partial
function with domain [0..n] x [0..n] such W (i,7) is defined iff ¢ < j. We call W a weight matrix
if it is a triangular function whose range is the set of non-negative real numbers. A quadruple
(i,7,4,4") is admissible if
0<i<i <j<j <n
We say W is monotone if
W', 5) <W(i,j")

for all admissible (i,i',7,j"). The quadrangle inequality for W for (i,, j,j') is
W (i, 5) + W(i', ") < W(i,j") + W(,j).

We say W is quadrangular if it satisfies the quadrangular inequality for all admissible (i,4',j,7").

monotone:
e < O

quadrangular:
H+H < o+@

Figure 7: Monotone and quadrangular weight matrix.

It is sometimes convenient to write W;; or W; ; instead of W(i,j). If we view W;; as the
(i,7)-th entry of an n-square matrix W, then W is upper triangular matrix. Note that (i,4’, j, ;)
is admissible iff the four points (i, j), (¢,), (¢,5'), (¢',j’) are all on or above the main diagonal of
W (see Figure 7). Monotonicity and quadrangularity is also best seen visually (cf. Figure 7):

(© Chee-Keng Yap Basic Version April 16, 2008

§7. WEIGHT MATRICES Lecture VII Page 33

e Monotonic means that along any north-eastern path in the upper triangular matrix, the
matrix values are non-decreasing.

e Quadrangularity means that for any 4 corner entries of a rectangle lying on or above the
main diagonal, the south-west plus the north-east entries are not less than the sum of the
other two.

I Example: In the optimal search tree problem, the weight function W is implicitly
specified by O(n) parameters, viz., qo,P1,q1, - - - s Pn, @n, With

J J
W@j)= > a+y v
k=1

k=i—1

In this case, W(i,j) can be computed in linear time from the g;’s and pi’s. The point is that,
depending on the representation, W (7, j) may not be available in constant time. The following is
left as an exercise:

LEMMA 3. The weight matriz for the optimal search tree problem is both monotone and quadran-
gular. In fact, the quadrangular inequality is an equality.

DEFINITION 2. Given a weight matriz W, its derived weight matrix s the triangular function
W*:[0..n]* — Rxg

is defined as follows:
W*(i,4) :== W (i,1).

Assuming that W*(i,) has been defined for all j — i < £, define

W*(i,i+4) :=W(i,i+¢) + i<rg1§151+é{W (i,k—1)+ W*(k,i+£)}.

Defining
W= (i, js k) == W(i,j) + W*(i, k — 1) + W*(k, j), (26)

we call k an (i, j)-splitter if W*(i,5) = W*(i,5; k).

Note: the literature (especially in operations research) describes the Monge property of matri-
ces. This turns out to be the quadrangle inequality restricted to admissible quadruples (4,4, j, ')
where 7/ =i+ 1 and j' = j + 1.

EXERCISES

Exercise 7.1: (a) Computer the derived matrix of the following weight matrices:

T NEIENEIE
w222 ot
1 412

2

(b) Suppose W (i, j) = a; for i = j and W (4, j) = 0 for i # j. The a;’s are arbitrary constants.
Succinctly describe the matrix W*. &

(© Chee-Keng Yap Basic Version April 16, 2008

§8. QUADRANGULAR INEQUALITY Lecture VII Page 34

Exercise 7.2: (Lemma 3) Verify that the weight matrix for the optimal search tree problem is
indeed monotone and satisfies the quadrangular equality. &

Exercise 7.3: Write a program to compute the derivative of a matrix. It should run in O(n?)
time on an m-square matrix. O

Exercise 7.4:
(a) Interpret the derived matrix for the optimal search tree problem.
(b) Does the derived matrix of a derived matrix have a realistic interpretation? &

Exercise 7.5: Generalize the concept of a triangular function W so that its domain is [0..n]"
for any integer k > 2, and W(i1,...,i;) is defined iff iy < iy < .-+ < i. Then W is a
weight function (of order n and dimension k) if it is triangular and has range over the
non-negative real numbers. Formulate the “optimal k-gonalization” problem for an abstract
n-gon. (This seeks to partition an n-gon into ¢-gons where 3 < ¢ < k. Give a dynamic
programming solution. &

END EXERCISES

88. Quadrangular Inequality

The quadrangular inequality is central in the O(n?) solution of the optimal search tree problem.
We will show two key lemmas.

LEMMA 4. If W is monotone and quadrangular, then the derived weight matriz W* is also quad-
rangular.

Proof. We must show the quadrangular inequality
W*(i, j) + W', j") < W*(i,5') + W (7, j), 0<i<i<j<j <n). (27)

First, we make the simple observation when ¢ =i’ or j = j/, the inequality in equation (1) holds
trivially.

The proof is by induction on £ = j —¢. The basis, when £ = 1, is immediate from the previous
observation, since we have ¢ = i’ or j = j’ in this case.

930. Case i <i = j < j’: So we want to prove that W*(i,7)+W*(j4,7") < W*(i, 5)+ W*(4, 7).
Let W*(i,7") = W(i,j'; k) and initially assume i < k < j. Then

Wi+ Wige < Wi+ Wi + Wi I+ Wiy, (expanding Wr;)
< Wiy + Wiy +[Wi; + W] (by monotonicity)
< Wiy + Wiy + Wil + W2, (by induction)
= Wi, +W;; (by choice of k).

In case j < k < 7', we would initially expand W, above.

(© Chee-Keng Yap Basic Version April 16, 2008

§8. QUADRANGULAR INEQUALITY Lecture VII Page 35

931. Case i < i’ < j<j't Let W*(s,5") = W(i,j'; k) and W*(¢/,j) = W(i’,;£) and initially
assume k < /. Then

Wi+ Wi Wi+ Wiy + Wi+ Wiy + Wiy + Wil (since i <k < j,i" << j7)
(Wi o+ Wl Gl Wi Wi, + Wy 5+ Wi (W is quadrangular)
Wi+ Wil + Wiy + Wi + W, + W] (induction on (k, 4, 7,5'))
[Wz] +Wk 1+ij] [W “I‘W/g 1+W€7]
Wi+ Wi, (by choice of k, ¢).

A IAIA A

In case 6 < k, we can begin as above with the initial inequality W* (i, j) + W*(¢/, j') < W*(i,7;€) +
W (i, js k). Q.E.D.

932. Splitting function K. The (4,7)-splitter k is not unique but we make it unique in the
next definition by choosing the largest such k.

DEFINITION 3. Let W be an weight matriz. Define the splitting function Ky to be a triangular
function

w: [0..n)% — [0..n]
defined as follows: Kw(i,i) =14 and for 0 <i<j<n,

Kw(i,j) :=max{k: W*(i,j) = W(i,j;k)}.

We simply write K (i, j) for Ky (4,7) when W is understood. Once the function Ky is deter-
mined, it is a straightforward matter to compute the derived matrix of W The following is the key
to a faster algorithm.

LEMMA 5. If the derived weight matriz of W is quadrangular, then for all 0 <i < j < j,

Proof. By symmetry, it suffices to prove that
K(i,j) < K(i,j +1). (28)
This is implied by the following claim: if ¢ < k <k’ < j then
W*(i,j; k') < W*(i,j; k) implies W™ (i,j + 1; k) < W*(i,j + 1; k). (29)

To see the implication, suppose equation (1) fails, say K(i,j) = k' > k = K(i,j + 1). Then the
claim implies K (4,7 + 1) > k’, contradiction.

It remains to show the claim. Consider the quadrangular inequality for the admissible quadruple
(ku kluj?j + 1)7
Wk, j) + W (K, j+1) < W*(k,j + 1) + W (K, j).

Adding W(i,5) + W (i, + 1)+ W*(i,k — 1) + W*(i, k' — 1) to both sides, we obtain
W (i, js k) + W76, § + 1K) <SW7(i, 5+ 15k) + W7 (i, j; k).

This implies equation (1). Q.E.D.

(© Chee-Keng Yap Basic Version April 16, 2008

§8. QUADRANGULAR INEQUALITY Lecture VII Page 36

€33. Main result. The previous lemma gives rise to a faster dynamic programming solution
for monotone quadrangular weight functions.

THEOREM 6. Let W be weight matriz such that W (i,j) can be computed in constant time for all
1 <1 <5 <n, and its derived matric W* is quadrangular. Then its derived matriz W* and the
splitting function Ky can be computed in O(n?) time and space.

Proof. We proceed in stages. In stage £ = 1,...,n — 1, we will compute K(i,7 + ¢) and
W*(i,i+4£) (for alli = 0,...,n—£). It suffices to show that each stage takes takes O(n) time. We
compute W* (4,4 + £) using the minimization

W*(i,i+0) = min{W(i,i+ k) : K(i,i+0—1) <k < K(i+1,i+0)}.

This equation is justified by the previous lemma, and it takes time O(K (i + 1,7+ ¢) — K(i,i+ ¢ —

1)+ 1). Summing over all i = 1,...,n — ¢, we get the telescoping sum
n—~
SIK(+1i+0)—K(i,i+—1)+1]=n—{+Kn—L+1,n) - K(1,£) = O(n).
i=1
Hence stage ¢ takes O(n) time. Q.E.D.

934. Remarks. We refer to [6] for a history of this problem and related work. The original
formulation of the optimal search tree problem assumes p;’s are zero. For this case, T.C. Hu has
an non-obvious algorithm that Hu and Tucker were able to show runs correctly in O(nlogn)
time. Mehlhorn [7] considers “approximate” optimal trees and show that these can be con-
structed in O(nlogn) time. He describes a solution to the “approximate search tree” prob-
lem in which we dynamically change the frequencies; see “Dynamic binary search”, (SIAM
J.Comp.,8:2(1979)175-198). M. R. Garey gives an efficient algorithm when we want the opti-
mal tree subject to a depth bound; see “Optimal Binary Search Trees with Restricted Maximum
Depth, (SIAM J.Comp.,3:2(1974)101-110).

EXERCISES

Exercise 8.1: (a) Compute the optimal binary tree for the following sequence:
(go,p1,q15---,P10,q10) = (1,2,0,1,1,3,2,0,1,2,4,1,3,3,2,1,2,5,1,0, 2).
(b) Compute the optimal binary tree for the case where the ¢’s are the same as in (a), namely,
(go,q1,---,q10) = (1,0,1,2,1,4,3,2,2,1,2)

and the p’s are 0. &

Exercise 8.2: It is actually easy to give a “graphical” proof of lemma 5. In the figure 8, this
amounts to showing that if A+a > B+bthen A’ +a' > B +V'.

O

Exercise 8.3: If W is monotone and quadrangular, is W* monotone? O

(© Chee-Keng Yap Basic Version April 16, 2008

§9. CONCLUSION Lecture VII Page 37

A B C
)
O/
A | B
a a’
b v

Figure 8: Derived weight matrix.

Exercise 8.4: Consider a binary search tree that has this shape (essentially a linear list):

Show that the following set of inequalities is necessary and sufficient for the above search
tree to be optimal:

p1+ @ (E»)
P2+ ¢ +p1+q (E3)

p2tq =
p3t+qs =

Pn + dn Z Pn—1 + dn—2 +pn72 + - +p1 + q0 (En)

HINT: use induction to prove sufficiency.
Remark: So search trees with such shapes can be verified to be optimal in linear time. In
general, can an search tree be verified to be optimal in o(n?) time? &

Exercise 8.5: (a) Generalize the above result so that all the internal nodes to the left of the root
are left-child of its parent, and all the internal nodes to the right of the root are right-child
of its parent. (b) Can you generalized this to the case where all the internal nodes lie on one
path (ignoring directions along the tree edges — the path first traverses up the tree to the

root and then down the tree again). &
Exercise 8.6: Given a sequence aq,...,a, of real numbers. Let A;; = Zi:i ak, Bij = min{Ay; :
k=1,...,5} and B; = By;. Compute the values By, ..., B, in O(n) time. &

END EXERCISES

(© Chee-Keng Yap Basic Version April 16, 2008

§9. CONCLUSION Lecture VII Page 38

dn—1
b1
q0 q1

Figure 9: Linear list search tree.

89. Conclusion

This chapter shows the versatility of the on dynamic programming approach to a variety of

problems. A serious drawback of dynamic programming is its high polynomial cost: O(n*) for
k > 2, in both time and space may not be practical in some applications. Hence there is interest in
exploiting “sparsity conditions” when they occur. Sometimes, the implicit matrix to be searched
has special properties (Monge conditions). See the survey of Giancarlo [4] for such examples.

References

1]

2]

A. Apostolico and Z. Galil, editors. Pattern Matching Algorithms. Oxford University Press,
1997.

D. Z. Chen, O. Daescu, X. Hu, and J. Xu. Finding an optimal path without growing the tree.
J. Algorithms, 49(1):13-41, 2003.

M. L. Fredman. Growth Properties of a class of recursively defined functions. PhD thesis,
Stanford University, 1972. Technical Report No. STAN-CS-72-296. PhD Thesis.

R. Giancarlo. Dynamic programming: Special cases. In A. Apostolico and Z. Galil, editors,
Pattern Matching Algorithms, pages 201-232. Oxford University Press, 1997.

T. C. Hu and M.-T. Shing. An O(n) algorithm to find a near-optimum partition of a convex
polygon. J. Algorithms, 2:122—-138, 1981.

D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-
Wesley, Boston, 1972.

K. Mehlhorn. Datastructures and Algorithms 1: Sorting and Sorting. Springer-Verlag, Berlin,
1984.

P. Ramanan. A new lower bound technique and its application: Tight lower bound for a
polygon triangulation problem. SIAM J. Computing, 23:834-851, 1994.

(© Chee-Keng Yap Basic Version April 16, 2008

