
§1. Some Hard Problems Lecture XXX Page 1

Lecture XXX

NP-COMPLETENESS

We have studied many computational problems in the course of this book. Despite the common
theme of complexity in our studies, there is so far no coherent framework encompassing these
problems. This final chapter introduces some elements of complexity theory to unify a large
portion of our investigations.

We have mostly looked at algorithms for computational problems – these provide upper bounds
on computational complexity. We have almost exclusively focused on problems that are solvable in
polynomial-time. In complexity theory, we are also interested in “inherent complexity”. This says
that we are also interested in proving lower bounds. This is a much harder quest: for instance, to
show that a problem cannot be solved in n2 time, we must prove something about all conceivable
algorithms for solving the problem! How can one do this? The formalization of “all conceivable
algorithms” amounts to defining a suitable computational model. We already saw this procedure in
Chapter I, where we proved the information theoretic lower bound for sorting, under the decision
tree model. In fact, that is the only general lower bound discussed in this book until now. This
chapter will show another way to prove lower bounds that is more generally applicable.

Once the computational model is settled, we take another, less obvious, step: we want to
classify problems into those that are “tractable” and those that are not. This step has precedent
in the computability theory, where a fundamental dichotomy of problems are the computable ones
versus the uncomputable ones. The meta-principle here says that “solvable using a polynomial
amount of resources” is equated with tractability. This is a meta-principle because we still have
to choose the computational resource, machine model, etc. For simplicity, we will assume that the
computational resource of interest is time.

As in computability theory, this second step turns out to be extremely fruitful, both theoret-
ically as well as in practice. Intractable as well as suspected-intractable problems actually arise
very frequently in applications. This forces us to develop new techniques for attacking such prob-
lems. While these techniques may be still fundamentally non-polynomial, they allow non-trivial
instances to be solved. For instance, improving an algorithm from 2n time to 2

√
n time can have

significant practical impact. Often, in the worst case, we know no better than using a “brute-force
search” which typically means an exponential time search for solutions. To circumvent this, we
can introduce more powerful computational models (e.g., randomization, approximation) or more
refined complexity models (introduction of output-sensitivity in classifying algorithms).

The study of suspected-intractable problems has a discouraging side: all attempts to prove
that they are actually intractable has failed miserably. Indeed, we could not even prove that these
problems require at least cubic time, say. But the bright side is that researchers discovered a re-
markable phenomenon. There is a large class of suspected-intractable problems that are equivalent
in the sense that any problem in this equivalence class is tractable if and only if all of them are
tractable. This is the theory of NP-completeness which we will study in this chapter. Along the
way, we introduce some basic elements of complexity theory.

§1. Some Hard Problems

Consider the following computational problems.

• Bin Packing. Recall the linear bin packing problem introduced to illustrate the greedy

c© Chee-Keng Yap Basic Version May 5, 2008

§1. Some Hard Problems Lecture XXX Page 2

method: given numbers (M ; w1, . . . , wn) we want to pack the weights wi into the minimum
number of bins where each bin has capacity M . The problem is “linear” because the order
of packing the weights wi into bins are specified. In the general bin packing problem, you
can rearrange the weights in any way you want. We showed that the general problem can be
reduced to linear bin packing to achieve a complexity of O(nn−(1/2)).

• Longest Path Problem. Given a bigraph G = (V, E; s), we want to compute a “longest
path” from s, namely a path p = (s, v1, v2, . . . , vk) such that k is maximized. The notion
of longest path here need to be clarified, because if s can reach any cycle then we can have
paths that are arbitrarily long, but no single path is the longest. Since we do not want to
exclude cycles from G, we will insist that the “longest path” must by simple (i.e., no vertex
is visited twice). This resembles the shortest path problem which we can solve using BFS
(Chapter IV). We shall see that this resemblance is highly deceptive.

• Traveling Salesman Problem (TSP). Given a n×n matrix M whose (i, j)-th entry (M)ij

represents the distance from city i to city j, Let π be a permutation of {1, . . . , n}, i.e., a
bijection π : {1, . . . , n} → {1, . . . , n}. We view π as a tour or itinerary of a salesman who
begins in city π(1), and visits cities π(2), π(3), . . . , π(n) and finally returning to city π(1).
The cost C(π) of this tour is the sum of all the intercity distances traveled. The problem is
compute a tour π of minimum cost.

This problem has many important applications. For instance, in integrated circuit fabrication
we may have a very complex circuitry with thousands of points that need soldering by a robot
arm. What we want is a minimum cost tour for a robot arm to visit all these point (“cities”).
If we could improve on a given tour by 10%, the soldering process might be sped up 10% –
a significant competitive advantage in manufacturing!

• Knapsack Problem. Suppose you are packing for your vacation and you have the n items
to pack: shoes, clothes, books, toiletry, scuba diving gear, etc. Let the ith item have size
si > 0 and an utility ui > 0. But you have one knapsack with capacity C > 0. A subset
I ⊆ {1, . . . , n} is called feasible if

∑

i∈I

si ≤ C.

You are to select a feasible set I such that the utility u(I) =
∑

i∈I ui is maximized.

• Chromatic Number of a Graph. Given a bigraph G = (V, E), we want to compute
the chromatic number χ(G) of G. This is defined to be the minimum k such that G has a
k-coloring. A k-coloring of G is an assignment of the “colors” 1, 2, . . . , k to the vertices of
G such that no two adjacent vertices have the same color.

To discuss complexity of problems, we need a notion of input size. For simplicity, we say that
the combinatorial size of each of the above problems is n. In the case of TSP and Knapsack, we
need to bound the numbers Mij , si, ui in terms of another parameter L. It is standard to assume
that all the input numbers in such problems are rational numbers, and L is the maximum bit size
of the input numbers. In general, we define to the bit size of a rational number p/q to be maximum
of lg 1 + |p| and lg 1 + |q|. For simplicity, we could use only one composite size parameter N
defined to be N = max{n, L}. But remember that n and L have rather distinct properties, so the
use of N is a very crude approach.

We currently do know if any of these problems are tractable: that is, whether there exist
algorithms with running time O(Nk) for any fixed k. In order to understand the tractability issue,
we can simplify the above problems.

The above problems are optimization problems because the solutions satisfy some minimal-
ity or maximality criteria. Typically, any optimization problem can be simplified into decision

c© Chee-Keng Yap Basic Version May 5, 2008

§1. Some Hard Problems Lecture XXX Page 3

problems, in which the required output is binary-valued (YES/NO). To illustrate this remark,
let us convert each of the above problems into a decision problem:

• Bin Packing Decision Problem. Given (M, w1, . . . , wn) as before, and integer k ≥ 1, can
we pack the n weights into k bins?

• Traveling Salesman Decision Problem (TSD). Given the matrix M as before, and a
rational number B, does there exist a tour π such that C(π) ≤ B?

• Knapsack Decision Problem Given C, s1, . . . , sn and u1, . . . , un as before, and a rational
number B, does there exist a feasible set I such that

∑

i∈I ui ≥ B?

• Chromatic Number Decision Problem. Given a bigraph G and an integer k ≥ 1, is
χ(G) ≤ k?

The theory we are about to develop will mostly deal with decision problems. It is intuitively
clear that each decision problem is simpler than the corresponding optimization problem. So
in what sense is this theory adequate for optimization problems? It turns out that, as far as
tractability is concerned, the original problem is tractable iff the corresponding decision prob-
lem is tractable. This means that the simpler theory of decision problems is still adequate for
distinguishing tractable from intractable problems.

The four problems we listed is just a sampling of a host of problems not known to be tractable.
The book [1] contains a list of over 300 problems from all areas of the computational literature
with this remarkable property: if any one of these problems is tractable, then all of them would

be tractable. These problems are “NP-Complete”, a concept we will introduce. Of course, the
list has grown considerably since the writing of the book. The existence of this NP -completeness
phenomenon has important implications for the study of algorithms.

• First, it tells us that there is overwhelming evidence for the inherent difficulty of these
problems. That is because experts have looked at these equivalent problems from many
viewpoints (“over 300 viewpoints”, in view of [1]) and have found no possibility of solving
them in polynomial time. In fact, most experts believe that these problems are intractable.

• Second, instead of attempting to show efficient algorithms for a problem, especially if we
suspect that it is not possible, we can also attempt to show it to be NP -complete. This
would bring relative closure to our investigation, as this constitute a kind of lower bound (or
negative) result.

• Third, it has motivated the investigation of new and more powerful computational techniques
for attacking such problems. These techniques include randomization, parallelization and
approximation.

In short, the overall impact of this theory on the computational literature is far-ranging.

Exercises

Exercise 1.1: Give some good algorithmic solution for the following problems: (a) TSP, (b)
Chromatic Number and (c) Knapsack. While your solution is expected be non-polynomial,
you should try to make it as efficient as you can. ♦

c© Chee-Keng Yap Basic Version May 5, 2008

§2. Model of Computation Lecture XXX Page 4

Exercise 1.2: For each case of the previous question, estimate the largest size N of the problem
that your algorithm can solve in one day of (current) computer time. Make explicit any
assumptions you need (speed of your computer, memory requirements, etc). ♦

End Exercises

§2. Model of Computation

In order to bring the various problems under one framework, we need to have a “universal
computational model”. Many general models of computation have been proposed. Relative to
goal of classifying computable and noncomputable problems, all these models turn out to be
equivalent. But in terms of complexity, the issue is considerably more subtle (this is related to
the concept of “computational modes” [2]). In any case, the canonical choice here is the Turing
machine model. Again, there are many variants of Turing machines. For our present purpose,
we use the simple Turing Machine (STM) model.

We start with the initial idea of a finite state machine. This machine M can be represented
by a directed graph whose vertex set Q is finite and where each edge is labeled by a symbol from a
set Σ called the alphabet of M . The vertices in Q are called states and edges called transitions.
If a transition (u, v) ∈ Q2 is labeled by a symbol a ∈ Σ, we may denote it by (u

a
→ v). There are

distinguished states, a start state q0 ∈ Q and an accept state qa ∈ Q.

1 0 0, 1

1

1 1

0

00
q0 q1 q2 q3 q4

Figure 1: Finite State Machine

EXAMPLE. In Figure 1, we show a finite state machine illustrating several conventions. The
alphabet here is Σ = {0, 1} and state set is Q = {q0, q1, . . . , q4}. The start state is q0 (this is
indicated by the arrow from nowhere, and its accept state qa is q4 (indicated by the concentric
circles around q4). When two or more transitions (edges) share the same start and end vertices,

we will just draw one arrow, labeled by two or more the symbols. Thus, the transitions (q4
0
→ q4)

and transitions (q4
1
→ q4) in this figure is represented by just one edge, labeled by the symbols 0

and 1.

The operation of a finite state machine M is as follows: its input is some string w ∈ Σ∗. It
executes a sequence of transitions in the following sense: at any moment, M has a current state
and a current head position h ∈ {1, 2, . . . , n, n+1} where |w| = n. Initially, M is in state q0 and
head position is h = 1. In head position h, we say that M is scanning the hth symbol w[h] ∈ Σ
in w. When in state q and scanning symbol a ∈ Σ, our machine M can execute any transition of
the form (q

a
→ q′), and thereby move into state q′. Its head position is incremented, h ← h + 1.

Note two possibilities:

• If there is more than one transition from state q that are labeled by symbol a, then M can
execute any one of them. In this case, we say M made a nondeterministic move.

c© Chee-Keng Yap Basic Version May 5, 2008

§2. Model of Computation Lecture XXX Page 5

• M could be stuck in the sense that there are no executable transitions from state q.

EXAMPLE (contd). Suppose w = 000100. Then the machine in Figure 1 would enter the
following sequence of states as the head moves from position 1 to 6 is (q0, q1, q1, q1, q2, q3, q1). In
this case, no non-deterministic moves were made. Suppose w = 111. In this case, the very first
move must make a non-deterministic (M can go to state q2 or remain in state q0). One possible
sequence of states might be (q0, q2, ∗) where ∗ indicates that the machine is now stuck at head
position 2. Alternatively, the state sequence can be (q0, q0, q0, q2).

A configuration of M is a pair c = (q, h) where q is a state and h is a position. A computation
of M is a sequence of configurations C = (c1, . . . , cm) for some m ≤ n and such that ci → ci+1

is legal for all i = 1, . . . , m − 1. We say C is an accepting computation if the state in cm is
the accept state. We say M accepts w if there is an accepting computation of M on input w.
Note that M does not accept qa, there for every computation path C are two possibilities: it could
be stuck before reaching position n + 1, or it could reach position n + 1 in a state different than
qa. A machine M is said to be nondeterministic it has at least one pair of transitions (u

a
→ v)

(u′ a′

→ v′) where u = u′ and a = a′. Otherwise we say M is deterministic.

0 1 2 3−1−2−3

b

q

ainfinite tape

Figure 2: Turing machine in state q ∈ Q

A simple Turing machine M is an extension of a finite state machine with two new features:

• First, we view M as computing on a doubly-infinite tape where the tape is made up of
individual cells (tape squares) which are indexed by the integers. Each cell can store a
symbol from Σ or a special blank symbol ⊔ (assumed not in Σ). Initially, the input w is
placed on cells 1, 2, . . . , |w|, and all the other cells are initially blank (i.e., contains ⊔). The
machine has a tape head which is at some position h ∈ Z at any moment. We say M
is scanning symbol a if its current head position is h ∈ Z and the contents of cell h is
a ∈ Σ ∪ {⊔}. Initially, the machine is in the start state q0 at head position h = 0 (thus M
initially scans a blank symbol).

• Each transition is now labeled by a triple (a, a′, D) ∈ Σ′ ×Σ′×{0,±1} where Σ′ = Σ∪ {⊔}.
So the transition has the form

(u
(a,a′,D)
−→ v) (1)

where u, v ∈ Q. The interpretation of (1) is that, if the machine is scanning symbol a in
state u, then it may execute this transition. Upon executing this transition, it enters the
state v, changes the symbol at the current position from a to a′, and move its current head
position from h to h + D. If D = 0, its head position is unchanged, and D = −1 means that
its head position can move left. In the finite state machine, D is always +1 implicitly.

A STM M can be viewed as a finite set of transitions of the form (1). We call (u, a) the
precondition of the transition (1). If in a certain state u while scanning some a ∈ Σ′, there are

c© Chee-Keng Yap Basic Version May 5, 2008

§3. Computational Problems Lecture XXX Page 6

no transitions with precondition (u, a), we say M is stuck; if there is more than one transitions
with precondition (u, a), we say M has choice. We say M is deterministic if no two transitions
have the same precondition; otherwise M is nondeterministic. The computation is not required
to stop after |w| transition steps – it can even continue forever. The computation halts when it
reaches the accept state qa or is stuck.

REMARK: we call the above model the “simple Turing machine” (STM) because there are
many variants of Turing machines, and these are invariably more elaborate than our version. But
for our purposes, the STM model suffices.

¶1. What does a Turing machine compute? Our main use of the simple Turing is to accept
languages. That is, we say M accepts w ∈ Σ∗ if there exists a computational path on input w
that leads to the accept state. Let

L(M) ⊆ Σ∗

denote the language accepted by M .

We sometimes need simple Turing machines to compute functions of the form f : Σ∗ → Σ∗.
The function f may be partial. In this role, the Turing machine is called a transducer. To define
how transducers compute, we need some conventions. First of all, it is easiest to assume M is
deterministic. On input w, if M does not halt, then f(w) ↑. Otherwise, when it halts, let the
tape head be scanning cell i for some i ∈ Z. If cell i is blank, then f(w) = ǫ (the empty string).
Otherwise, there is a maximal contiguous block of cells that contains non-blank symbols and that
includes cell i. The output f(w) is defined as the word contained in this block of cells.

Exercises

Exercise 2.1: Construct a Turing machine M to check if a bigraph is connected. Assume (be
explicit) some reasonable encoding of bigraphs. Please describe the actions of M in words,
not by writing down its set of instructions! ♦

Exercise 2.2: Consider the following variants of the Traveling Salesman Problem (TSP). Here,
G = (V, E; C) denoted a digraph with edge costs that are natural numbers, C : E → N.

• TSP: Given G = (V, E; C), compute a minimum tour π, i.e., π such that C(π) is
minimum.

• TSC: Given G = (V, E; C), compute the cost c∗ = C(π) of a minimum tour.

• TSD: Given G = (V, E; C) and an integer k > 0, determine whether there is a tour π
with cost C(π) at most k.

(a) The following should be easy: show TSD ≤P TSC ≤P TSP. (b) Show that TSC ≤P

TSD. (c) Show that TSP ≤P TSC. HINT: Note that it does not matter what the starting
vertex v0 is. But how can you use TSC to help you determine whether there is an optimum
tour that begins with the edge (v0, v1)?

♦

End Exercises

c© Chee-Keng Yap Basic Version May 5, 2008

§3. Computational Problems Lecture XXX Page 7

§3. Computational Problems

The above computational model apparently computes on input strings. But computational
problems arise in mathematical domains such as integers, sets, graphs, matrices, etc. In order to
solve these problems, we must therefore assume some encoding of these objects as strings. The
following will be assumed unless otherwise indicated:

• Integers: these are represented in binary notation. We can generalize this to rational num-
bers, represented by a pair of integers.

• Matrices: assuming a representation of the matrix entries (say binary numbers) then the
entire matrix can be represented by a row-major order listing of entries:

M [1, 1], . . . , M [1, n], M [2, 1], . . . , M [2, n], M [3, 1], . . . , M [m, 1], . . . , M [m, n].

Of course, we must also explicitly encode the size m, n of the matrix.

• Sets: again, relative to some encoding of the elements of the set, we encode a set by an
arbitrary listing of its elements. The encoding of a set is not unique (there are n! possible
ways to list its elements).

If g is an object, we may write #(g) for the encoded version of g. E.g., #M ⊆ Σ∗ where

#M = (m, n; M [1, 1], . . . , M [1, n], M [2, 1], . . . , M [2, n], M [3, 1], . . . , M [m, 1], . . . , M [m, n]).

Often, we do not make this distinction explicitly, and simply identify g with #(g).

The above encoding of matrices includes vectors or tuples as special cases. In these encodings,
it is simplest if we introduce new symbols (e.g., commas and parenthesis symbols) to separate
items in a list or set.

EXAMPLE: encoding of digraphs. Three main methods are: (1) listing of the edge set, (2) ad-
jacency lists and (3) adjacency matrix. Assuming that the nodes have some given encoding already
(say, as integers) and edges are just pairs of nodes, then method (1) amounts to a representation
of a set, and method (2) amounts to a list of lists of nodes. Method (3) can be viewed as a boolean
matrix.

¶2. Efficiency of Encoding. Note that the complexity of a problem depends on the encoding
#(g) function. The choice of encoding usually does not affect the tractability of a problem, but
there are exceptions. The most important example is the encoding of integers: we can use k-ary
encoding of integers for any k > 2, instead of the default binary encoding (k = 2). On the other
hand, we must not use unary encoding (k = 1). The reason is that this is exponentially less
efficient than k-ary encoding for k > 1. This will have drastic consequence on the complexity of
the problem: an exponential time problem may become polynomial time just by this encoding
artifact. This shows that it is important to have “compact encodings”.

The more compact an encoding the more difficult the corresponding problem. Here is a classic
example: consider the problem of computing the GCD of two integer polynomials. E.g., P =
x2 + 2x + 1, Q = x2 + 3x + 2 then GCD(P, Q) = x + 1. If the input polynomials are represented
its sequence of coefficients (e.g., P : (1, 2, 1) and Q : (1, 3, 2)) then the input size is at least d + 2
where d is the maximum degree of the input polynomials. On the other hand, consider encoding a
polynomial using the sparse representation where we represent only the non-zero coefficients. E.g.,
P = x8 − 3x5 + 7 is represented by ((8, 1), (5,−3), (0, 7)). In this case, Plaisted has shown that
GCD is NP -hard.

c© Chee-Keng Yap Basic Version May 5, 2008

§3. Computational Problems Lecture XXX Page 8

¶3. Satisfiability Problem. We introduce a central problem in the theory of NP -completeness.
A Boolean formula is an expression over the infinite supply of Boolean variables

x0, x1, x2, . . .

and defined recursively: any Boolean variable xi is a Boolean formula. If F1, F2 are Boolean
formulas, then so are

(¬F1), (F1 ∨ F2), (F1 ∧ F2).

These are the operations of negation, logical-or and logical-and. As a stylistic variant, we prefer
to write these formulas in the “arithmetical style”, namely,

(−F1), (F1 + F2), (F1 ∗ F2).

Instead of −x we may also write x. The reason for preferring the arithmetical style is that such
expressions can be compactly written, using well-known conventions for omitting parentheses. In
particular, we can:

• Use rules of operator precedence where negation − has higher precedence than ∧ or ∨, and
∧ has higher precedence than ∨. E.g., write −x ∨ y ∧ z instead of ((−x) ∨ (y ∧ z)). But
−x ∨ y ∧ z is less familiar than the the corresponding arithmetical notation, −x + y ∗ z.

• Replace ∧ by juxtaposition of variables. E.g., write xy instead of x ∧ y or x ∗ y.

• Exploit associativity of ∨ and ∧. E.g., write x ∨ y ∨ z or x + y + z, instead of ((x ∨ y) ∨ z).
We can also use summation and product notations such as

∑n
i=1 xi and

∏n
i=1 xi.

¶4. Satisfaction. We define satisfiability of a Boolean formula. An assignment for F is a
function I : V → {0, 1} where V contains all the variables that occurs in the formula F (but V
may contain more than just the variables in F). We say I satisfies F as follows: (BASIS) If F is
a variable x, then I satisfies F iff I(x) = 1. (INDUCTION) If F = −F1, then I satisfies F iff I
does not satisfy F1. If F = F1 + F2, then I satisfies F iff I satisfies F1 or F2. If F = F1F2, then I
satisfies F iff I satisfies F1 and F2.

We say F is satisfiable if there exist some I that satisfies F . Let SAT denote the set of all
satisfiable Boolean formulas.

EXAMPLE: the formula

F = (x + y + z)(x + y)(y + z)(z + x)(x + y + z) (2)

is not satisfiable, as the reader may verify.

EXAMPLE: Uniqueness Formula. Suppose X = {x1, . . . , xn} is a set of Boolean variables. We
want to ensure that every assignment to these variables must assign exactly one xi to true, the
rest to false. This formula is quite easy to write:

U(X) ≡

(

n
∑

i=1

xi

)





n
∏

i=1

n
∏

j=i+1

(xi + xj)



 . (3)

We will use this construction in the proof of Cook’s theorem below.

Let us discuss the encoding of Boolean formulas. For any formula F , let #(F) denote its
encoding. We will use the the alphabet Σ = {x,0,1,+,*,(,)} and so #(F) ∈ Σ∗. A string
w ∈ Σ∗ is said to be well-formed if it is equal to #(F) for some F ; otherwise it is ill-formed.

c© Chee-Keng Yap Basic Version May 5, 2008

§3. Computational Problems Lecture XXX Page 9

For variable xi let #(xi) be the string that begins with x followed by the binary representation
of i. E.g., #(x5) = x101.

Lemma 1. A simple Turing machine M can decide if a string w ∈ Σ is a well-formed Boolean

formula or not in polynomial time. That is x ∈ Σ∗ belongs to L(M) iff x = #F for some Boolean

formula F .

Proof. Sketch: we can match pairs of parenthesis. For an innermost pair of parenthesis, we first
check that a Boolean variable or its negation are well-formed. If so, we replace the sub-expression
by a special symbol X . We continue to work outwards, using the inductive definition of Boolean
formulas, until we are ultimately left with a single pair of parenthesis, at which point we enter the
accept state. If the transformation breaks down at some point, we reject x by entering some stuck
state. Q.E.D.

¶5. Discussion. In general, when we introduce encodings, we are faced with the problem of
well-formedness. Let D be some mathematical domain. An encoding of D is any total injective
function of the form

: D → Σ∗. (4)

By a representation of D we mean any partial surjection function of the form

ρ : Σ∗ → D. (5)

Call ρ(x) ∈ Σ∗ a representative of x ∈ D. Clearly, each encoding # gives rise to a a unique
representation ρ of D. Conversely, if we are given a representation ρ, we can obtain an encoding by
selecting a particular representative #(x) for each x ∈ D. We have two computational problems
associated to any ρ:

• (1) The parsing problem is to determine if a string w is well-formed.

• (2) The identity problem is to determine if two well-formed strings w, w′ represents the
same object in D.

Example: letD = N. The usual representation of N is the binary representation with Σ = {0, 1}.
Parsing is trivial because every binary string is well-formed. The identity problem is also easy
because two binary strings represents the same number if, after omitting any leading 0’s, they are
the same string.

Let f is any operation f : Dn → D. Relative to the representation (5), an algorithm F
implements f if, for every well-formed w1, . . . , wn, the algorithm computes F (w1, . . . , wn) such
that ρ(F (w1, . . . , wn)) = f(ρ(w1), . . . , ρ(wn)). Thus, the usual high school algorithm implements
the multiplication operation on N relative to the standard binary representation.

Usually both the parsing and identity problems are polynomial time. But they become an
issue for mathematical domains that are “abstract”, whose their objects might be defined by
some non-trivial equivalence relation over more concrete ones. For instance, in graph theory, we
normally identify two graphs up to isomorphism, meaning a renaming of their vertices so that
the have the same set of edges. Let G be the set of these abstract graphs. The identity problem
for any encoding of G is the graph isomorphism problem. It is not known if there exists a
representation ρ : G → Σ∗ such that both the parsing and identity problems are polynomial time.

Exercises

c© Chee-Keng Yap Basic Version May 5, 2008

§4. Complexity Classes Lecture XXX Page 10

Exercise 3.1: Give a representation of the mathematical domain N such that the parsing problem
is easy and the operation of multiplication can be implemented in linear time. How efficiently
can you implement the operation of addition in this representation? ♦

Exercise 3.2: (i) Give an representation of G for which the parsing problem can be decided in
polynomial time.
(ii) Give the best algorithm you can for deciding if two well-formed strings represent the
same graph of G. HINT: do not expect to find a polynomial time algorithm. ♦

End Exercises

§4. Complexity Classes

We now introduce concepts of complexity. Recall that a complexity function is a partial function

f : R→ R.

We are usually interested in families of complexity functions. The following are the main families:

O(log n), O(n), nO(1), O(1)n, 2nO(1)

.

These corresponds to logarithmic, linear, polynomial, simple exponential and single exponential
complexities.

We introduce (computational) resources: time and space will be our most important ex-
amples of resources. Define the time of the computation path π to be one less then the number
of configurations in the sequence (which could be infinite). The space of π is the total number of
cells that are scanned by some work tape in some configuration in π. Note that the cells in the
input tape are not counted.

For any complexity function f and TM M , we say M accept in time f if for all inputs w of
length n, if M accepts w then there is an accepting computation path using time at most f(n).
Note that if M does not accept w then we impose no requirement. This may appear counter-
intuitive, but has its advantages. Also, f is just an upper bound on the computation length. We
similarly define what it means for M to accept in space f .

We can now define complexity classes: these are the sets of languages that can be accepted
by TM’s using a specified amount of computational resources and operating is given computational
modes. The two computational modes we have discussed up to now are the deterministic and
nondeterministic modes.

Let F be a family of complexity functions. Then the class DTIME(F) denote those languages
that can be accepted in time t by a deterministic Turing machine, for some f ∈ F . The class
NTIME (F) is similarly defined, except we allow nondeterministic machines. Clearly, DTIME (F) ⊆
NTIME (F) since every deterministic machine is a nondeterministic one as well. Similarly, we have
DSPACE (F) and NSPACE (F) where we replace the time resource by space resource.

In particular, if F = nO(1) then the class DTIME (F) is known as deterministic polynomial-
time class and denoted by the symbol P . Similarly, NTIME (nO(1)) is the nondeterministic

c© Chee-Keng Yap Basic Version May 5, 2008

§4. Complexity Classes Lecture XXX Page 11

polynomial-time class and denoted by the symbol NP . In short,

P = DTIME(nO(1)), NP = NTIME (nO(1)).

More generally, a complexity class K is characterized by choice of a mode µ, a family F
of complexity functions and a computational resource ρ. We write

K = χ(µ, ρ, F)

to denote the class of languages L such that there exists f ∈ F and a µ-TM that accepts L in f(n)
units of ρ. We associate symbols with each of these parameters: D for deterministic mode, N for
nondeterministic mode, TIME for time and SPACE for space. Then χ(deterministic, time, F)
is what we denote by DTIME(F) above. If F = {f} then we write DTIME (f) instead of
DTIME ({f}).

¶6. The Classes P and NP. Using the above conventions, the class

DTIME (nO(1))

comprises the languages accepted by deterministic TM running in polynomial time. This class is
usually denoted P . Again, NTIME (nO(1)) is similar to P except the mode is non-deterministic
and this class is usually denoted NP . Another important class is PSPACE := DSPACE (nO(1)).
The following inclusions are straightforward to show:

P ⊆ NP ⊆ PSPACE .

These classes are usually called Deterministic Polynomial Time, Nondeterministic Poly-
nomial Time and Polynomial Space, respectively. These are extremely important classes for
several reasons: most problems that we can solve in practice falls under these classes. Of course,
if we agree that “tractable” means deterministic polynomial time, then P is just the class of
tractable problems.

¶7. Satisfiablity. We now verify the membership of some important problems in the class NP .

Lemma 2. SAT ∈ NP.

Variation: A 3-conjunctive normal Form (3CNF) formula is a Boolean formula that is a
conjunction of disjuncts, where each disjunct has exactly 3 literals. Clearly, such formulas has the
form

∏n
i=1(ui + vi + wi) where ui, vi, wi are literals. The 3SAT problem is the restriction of SAT

to inputs that are in 3CNF .

¶8. Hamiltonian Path Problem. A Hamiltonian circuit of a bigraph G is a simple closed
path that visits every vertex in G. Let HAM denote the set of (encodings) of G that has Hamil-
tonian circuits.

Lemma 3. HAM ∈ NP.

¶9. Verification and Certificates. Nondeterminism might sound strange as a computing
principle. But it will appear much more reasonable after we view it as a verification concept.

c© Chee-Keng Yap Basic Version May 5, 2008

§4. Complexity Classes Lecture XXX Page 12

In normal computation, we have to search to find an answer. In verification, someone poses an
answer, and you only need to check whether the purported answer is correct.

Let take the example of computing a factor (if any) of the nth Fermat number, Fn = 22n

+ 1.
The general question is to determine the primality status of Fn for given n. It is unknown if
there are infinitely many prime Fermat numbers. It is known that F0 = 3, F1 = 5, F2 = 17, F3 =
257, F4 = 65537 are all prime, and for 5 ≤ n ≤ 31, Fn is composite. Euler showed that any factor
of Fn has the form k2n+2 + 1. E.g., to find a factor of F5 we need to check numbers of the form
128k + 1. Indeed he found that 641 = 128 · 5 + 1 divides F5. Although it is possible to give a short
proof of this fact, we could also use a computer to easily verify Euler’s purported factor of 641.

In general, suppose our problem is to determine if a given number n is composite. This
computational problem is non-trivial, but if someone claims that n is composite and gives you a
factor m, you can easily verify the truth of her claim by dividing n by m. We say that m is a
witness for the compositeness of n. Thus 641 is a witness for F5. The algorithm which checks
that m divides n is called a verifier for compositeness. We are interested in verifier that runs in
polynomial-time.

Let L be a language, and M be a deterministic Turing acceptor that accepts in polynomial
time. We say M call a efficient verifier for L if for all strings x, x ∈ L iff there exists a string y
of length polynomial in |x| such that M(x, y) = 1.

Lemma 4. L ∈ NP iff L has a efficient verifier.

Proof. If L ∈ NP , let N be a nondeterministic machine that accepts L. We convert N into a
efficient verifier M as follows: on input x, y, M will simulating N on input x, except that the ith
step will takes the left- or right-choice in the nondeterministic computation of N according to the
ith bit in the string y. It it reaches an accept state before |y| steps, it outputs 1. Otherwise, it
outputs 0.

The converse is also clear: given a efficient verifier M , we convert it into a nondeterministic
TM for accepting x by guessing the two possible bits of some imaginary string y. Q.E.D.

Now consider the closely related problem of having an efficient verifier for primality. The simple
definition of prime numbers does not suggest that such a verifier exists. But Pratt (1974) has shown
that primality also has efficient verifiers. Equivalently, the set of primes is in NP .

Exercises

Exercise 4.1: Show that everything computed by a deterministic TM can be computed by a
non-deterministic TM in the same time and space ♦

Exercise 4.2: Show that HAM is reducible to the longest path decision problem. ♦

Exercise 4.3: In the Turing machine transition

(u
(a,a′,D)
−→ v) (6)

we call (u, a) the precondition of the transition. We say a non-deterministic Turing machine
is in normal form if it has the property that for each precondition (u, a) there are ≤ 2

c© Chee-Keng Yap Basic Version May 5, 2008

§5. Reductions Lecture XXX Page 13

transitions with this precondition.
(a) Show how to convert an arbitrary nondeterministic Turing machine M into one M ′ that
satisfies the normal form. Moreover, L(M) = L(M ′) and for any input w, M accepts w in
time t ≥ 0 iff M ′ accepts w in time t.
(b) Using the result of part (a), show that if L ∈ NP then we can accept L in deterministic

time 2nk

for some constant k > 0. ♦

Exercise 4.4: Another approach to NP is as follows: A verification machine M is a determin-
istic Turing machine with two input tapes. An input is a pair (w, v) with w on the first input
tape and v on the second input tape. We say M verifies a word w ∈ Σ∗ if there exists a
word v ∈ Σ∗ such that on input (w, v), M eventually enters the accept state qa and halts.
Say M verifies in time t(n) if for all inputs w, if M verifies w then there exists a v such
that M on (w, v) will halt within t(|w|) steps. Let V (M) be the set of words that is verified
by M . Show that L is in NP iff L is verified by a polynomial-time verification machine. ♦

Exercise 4.5: Show that NP ⊆ PSPACE . ♦

End Exercises

§5. Reductions

Let T be a deterministic Turing machine acting as a transducer and computing the transfor-
mation f : Σ∗ → Σ∗.

A language L ⊆ Σ∗ is sometimes denoted by the pair (L, Σ) if we want to explicitly indicate the
alphabet Σ. We say (L, Σ) is Karp-reducible (or, simply, reducible) to (L′, Σ′) if there exists a
polynomial-time computable transformation f : Σ∗ → Σ′∗ such that for all x ∈ Σ∗,

x ∈ L iff f(x) ∈ L′ (viaf).

We also write
L ≤P

m L′.

Lemma 5. (i) Transitivity If L ≤P
m L′ and L′ ≤P

m L′′ then L ≤P
m L′′.

(ii) Closure of P If L ≤P
m L′ and L′ ∈ P then L ∈ P .

Proof. (i) If f : {0, 1}∗ → {0, 1}∗ and g : {0, 1}∗ → {0, 1}∗ are both polynomial-time com-
putable, so is f ◦ g (the function composition). Part(i) follows immediately. For (ii), assume
L ≤P

m L′ via f . To check if x ∈ L, we compute f(x) and then check if f(x) ∈ L′. Since |f(x)| is
polynomial in |x|, this checking is polynomial-time in |x|. Q.E.D.

Lemma 6.
HAM ≤P

m SAT

Proof. Given G we construct a 3CNF formula f(G) that is satisfiable iff G ∈ HAM . Assume
nodes of G are {1, . . . , n}. A tour of G is a path T = (u1, . . . , un) such that (ui, ui+1) is an edge of
G for i = 1, . . . , n (where we assume un+1 = u1). Hence a tour represents a cycle of G. Introduce
a variable xij where i range over the nodes in G and j ranges from 1 to n. We want xij to stand
for the proposition about some unknown tour T of G:

c© Chee-Keng Yap Basic Version May 5, 2008

§5. Reductions Lecture XXX Page 14

Node i is the jth node in tour T .

With the help of these elementary propositions xij , we write down the following propositions that
must be true of T :
(1) For each j, there is a unique i such that xij is true.
(2) For each i, there is a unique j such that xij is true.
(3) For each i 6= i′, if xij and xi′,j+1 are true then (i, i′) is an edge of G.

These constructions exploit the formula U(X) for uniqueness in (3). It is clear that if G has
a tour, then (1), (2) and (3) must be satisfiable. Conversely, if (1), (2) and (3) are satisfiable, we
can construct a tour of G. Q.E.D.

Exercises

Exercise 5.1: Prove the transitivity and closure properties of Karp-reducibility. ♦

Exercise 5.2: A bigraph G = (V, E) is said to be triangular if |V | = 3n for some n and V can
be partitioned into n disjoint subsets

V1 ⊎ V2 ⊎ · · · ⊎ Vn

where each Vi has three vertices that form a triangle, i.e., if Vi = {u, v, w} then
{(u, v), (v, w), (w, u)} ⊆ E. Let L be the set of encodings of triangular bigraphs. We want to
show by a direct argument that L is Karp-reducible to SAT . We will guide you through a
sequence of subproblems to solve this: To show that L is Karp-reducible to SAT , you need
to construct a Boolean formula φ(G) such that G is triangular iff φ(G) ∈ SAT . Moreover,
this construction must be polynomial-time.
(i) If G = (V, E) and |V | is not divisible by 3 then there is no solution. What would you
output as φ(G) in this case?
(ii) Suppose |V | = 3m. So our goal is to form m disjoint triangles from the vertices of G.
Introduce the Boolean variable xij which corresponds to the proposition “Node i is in the
jth Triangle”. Here, i ∈ V and j = 1, . . . , m. Using these variables, you construct a Boolean
formula F1(i) that is satisfiable iff i is in at least one of the m triangles?
(iii) Similarly, construct F2(i) that is satisfiable iff i is in at most one triangle.
(iii) Construct a formula F3(j) that is satisfiable iff the jth triangle has at least three nodes.
(iv) Construct a formula F4(j) that is satisfiable iff the jth triangle has at most three nodes.
(v) Construct a formula F5(j) that is satisfiable iff each pair of vertices in the jth triangle
has an edge in the graph G. [NOTE: this is the first time you are actually using specific
information about the edges of G. You know G since it is in the input.]
(vi) Using the above formulas, describe the formula φ(G) that is satisfiable iff G is triangular.
You must prove this claimed property about φ(G).
(vii) Conclude that L is Karp-reducible to SAT . ♦

Exercise 5.3: We continue to consider the problem L of recognizing triangular graphs from the
previous exercise.
(i) Show by a direct argument that L is in NP .
(ii) Conclude that L is K-reducible to SAT .

Remark: In other words, we could short cut the explicit “reduction” of the previous exercise
to come to the same conclusion!. ♦

c© Chee-Keng Yap Basic Version May 5, 2008

§6. Fundamental Questions and Completeness Lecture XXX Page 15

Exercise 5.4: Show how to reduce the addition predicate to SAT: the addition predicate is the
set of all triples (a, b, c) where a, b, c are binary integers and a + b = c.
(i) Show how to construct in polynomial-time a Boolean formula F (a, b, c) of polynomial size
such that a + b = c iff F (a, b, c) is satisfiable.
(ii) Do the same for the multiplication predicate, comprising all triples (a, b, c) such that
ab = c. ♦

Exercise 5.5: Suppose instead of polynomial time, we restrict the transducer to run in logarithmic
space and linear time. Prove the transitivity and closure properties of such reducibility. ♦

End Exercises

§6. Fundamental Questions and Completeness

The most important open questions of complexity theory are all of the form: is K ⊆ K ′ where
K, K ′ are complexity classes. The most famous of such questions is the NP ⊆ P question. A
fundamental tool to study such inclusion questions is the theory of completeness.

Let K be a class of languages. A language L is K-hard if for all L′ ∈ K, L′ ≤P
m L. We say L is

K-complete if L is K-hard and L ∈ K. Here we prove some simple lemmas for the case K = NP .

Lemma 7. Let L0 be NP-complete. If L ∈ P then P = NP.

Thus, we transform inclusion questions about a class into questions about a single language in
the class! But are there any NP-complete languages? This is the key result of Cook, independently
discovered by Levin.

Theorem 8 (Cook’s Theorem (1971)). SAT is NP-complete.

Proof. We briefly sketch the proof. Let L be any language accepted by a non-deterministic
polynomial time p(n) Turing machine M . We must show that L ≤P

m SAT . This amounts to
showing that: for any input string x, we can construct in polynomial-time a Boolean formula φ(x)
such that φ(x) is satisfiable iff x ∈ L.

The formula φ(x) basically simulates the operations of the Turing machine M for p(|x|) many
steps.

We can view the computation of M as a p(|x|)p(|x|) matrix A where A(i, j) represents the local
information at position j at time i. What is this local information?

• The symbol in cell j at time i. For each a ∈ Σ, let T (i, j, a) be the variable that is true iff
the tape symbol is a.

• Whether the tape head of M is present. The variable H(i, j) is true iff the tape head is at
cell j in time i.

• The state at time i. For each q ∈ Q, introduce the variable S(i, q) that is true iff the state

at time i is q. (This does not depend on j.)

c© Chee-Keng Yap Basic Version May 5, 2008

§6. Fundamental Questions and Completeness Lecture XXX Page 16

• The instruction executed in the transition from time i to time i + 1. Let I(i, k) be true iff
the kth instruction is executed at time i. (Again, this does not depend on j.)

We can specify formulas that must be satisfied by these local data. From these polynomially
many Boolean variables, we construct a polynomial size φ(x).

We leave the details to the reader. Q.E.D.

Once we get one complete language, we can show more by the following technique:

Lemma 9. If L ∈ NP and L′ ≤P
m L then L′ is NP-complete implies L is NP-complete.

Lemma 10. 3SAT in NP-complete.

Proof. By the previous lemma, we only have to reduce SAT to 3SAT . Q.E.D.

Lemma 11. HAM is NP-complete.

Proof. We will reduce 3SAT to HAM . Let F be a 3CNF formula. We will construct a
graph G = GF such that F is satisfiable iff GF has a Hamiltonian circuit. We need two types of
“gadgets”:

choice gadget exclusive−or gadget traversing the exclusive−or gadget schematic

(a) (b) (c) (d)

in1

out1 out2

in2 in1 in2

out1 out2

in1 in2

out1 out2

b

a

Figure 3: Gadgets for reducing SAT to HAM

Figure 3(a) shows the choice gadget and figure 3(b) shows the XOR (exclusive-or) gadget.
These gadgets have entry nodes (indicated by large black circles and labeled “in” or “out”,
respectively). We will put several of these gadgets together to form GF . There will be additional
edges added in GF but these edges will only connect to each gadgets via the entry nodes. Let us
note some properties of these gadgets.

• The choice gadget is strictly speaking not a graph — it is a multigraph because it has two
parallel edges (i.e., edges sharing the same pair of endpoints). But this will not be a problem
because in the course of putting together these gadgets, we will be inserting vertices into one

c© Chee-Keng Yap Basic Version May 5, 2008

§6. Fundamental Questions and Completeness Lecture XXX Page 17

of the parallel edge. Let us call the two parallel edges the choice paths (in a Hamiltonian
cycle of the constructed graph, we will have to choose one of these two paths). Also, the two
non-entry vertices (a, b in figure 3(a)) of the choice gadget are called choice vertices.

• The XOR gadget has 4 vertices of degree 2 each. These vertices can only be visited in a
Hamiltonian cycle that enters through one of these entry nodes. But it is not hard to see that
if the Hamiltonian cycle enters the gadget through the entry node labeled in1 then it must
exit via the node out1, as illustrated in figure 3(c). Otherwise, the some vertex of degree 2
will not be visited. We call this a traversal of the XOR gadget. Of course, the symmetrical
traversal holds with respect to the entry nodes in2, out2. These two traversals are the only
ways to visit all the 4 vertices of degree 2 in a Hamiltonian circuit. In figure 3(d), we have
a schematic representation of the XOR gadget: intuitively, this schematic suggests that in1

and out1 are connected by an “edge”, and so are in2 and out2. Moreover, only one of these
two “edges” can be traversed (hence they are linked by an exclusive-or ⊕ symbol).

It is best to show how we form GF by an example. Let F be the formula

(x + y + z)(x + y + z)(x + y + z). (7)

To form G, we use one choice gadget to “simulate” each variable in F and three XOR gadgets
to “simulate” each clause of F . For the choice gadget that simulates a variable xi (i = 1, 2, 3),
its two choice paths are labeled xi and xi, respectively. The choice gadgets are linked together
sequentially in an arbitrary linear order as shown in figure 4(a). Call this the “choice chain”. Let
s0, t0 be the first and last node in the choice chain.

Consider the clause x+y+z. The three XOR gadgets for simulating this clause corresponds to
the literals x, y, z. The six in1 or out1 entry nodes in these gadgets are identified in pairs so that
they form a “triangle” of nodes – see figure 4(b). The in2, out2 entry nodes of XOR gadget are
“spliced into” the choice paths that is labeled by the corresponding literal in the choice chain, as in
figure 4(c). More precisely, each XOR gadget has a path of length 5 connecting in2 and out2: this
path is now made a subpath of the corresponding choice path. We do this for each clause. In our
example, the literal y occurs in two clauses. Hence two paths of length 5 will be spliced into the
choice path labeled y so that this choice path has length 13 in the final graph G. See figure 4(d).

Finally, we add the edges of the complete graph K defined on the following set of vertices:
(i) entry nodes in triangles (there are three such nodes per triangle), and (ii) the first and last
entry node in each choice path (there are four such nodes per choice gadget). This completes our
description of the graph GF .

¶10. F is satisfiable implies GF ∈ HAM : Suppose F is satisfiable by an assignment I to
the variables. We show how to construct a Hamiltonian cycle: starting from s0, we traverse each
choice gadget such that for each variable xi, if I(xi) = 1 then we take the choice path labeled
xi, and otherwise we take the choice path labeled xi. Now, as we traverse a choice path, we are
obliged to traverse each XOR gadget that is spliced into that path, in the canonical way illustrated
in figure 3(c). Since I satisfies F , this means that in every triangle, at least one of the three XOR
gadgets is traversed. This proceeds until we reach node t0. At this point, two kinds of entry nodes
are still not yet visited:

(I) Entry nodes in choice paths that are not taken,

(II) Entry nodes that forms the corners of triangles (such entry nodes have subscript 1).

c© Chee-Keng Yap Basic Version May 5, 2008

§6. Fundamental Questions and Completeness Lecture XXX Page 18

(b) (c)(a)

x x

y y

z z

x x

y y

z z

Splicing the triangle into the chaintriangle for (x + y + z)choice chain

s0

t0

z x

y

details of splicing

(d)

Figure 4: Graph corresponding to F

We now use the edges of the complete graph K: from t0, we start to visit entry nodes of type
(I). When this is done, we start to visit the entry nodes of type (II). But now, we also take the
opportunity to traverse any XOR gadget that is not yet traversed. Note that since I is a satisfying
assignment, there are at most two XOR gadgets in a triangle that is not yet traversed. It is easy to
see how to traverse the 0, 1 or 2 XOR gadgets in each triangle, in addition to visiting the 3 entry
nodes per triangle. At the end of this process, we use an edge of K to take us back to the starting
vertex s0. This completes our description of a Hamiltonian circuit.

¶11. GF ∈ HAM implies F is satisfiable: Suppose H is a Hamiltonian cycle. First, we claim
that H must traverse exactly one of choice paths for each choice gadget: if it traverse neither of
the choice paths, then there is no way the two choice vertices of the gadget could be visited by
H . If it traverse both choice paths, then some entry node common to two choice gadgets will not
be visited. From this claim, we conclude that H defines an assignment I = IH corresponding to

c© Chee-Keng Yap Basic Version May 5, 2008

§7. Postscript Lecture XXX Page 19

the choice paths that it traverses. We next claim that IH must be a satisfying assignment. This
means that each triangle must have at least one XOR gadget traversed from the choice paths. If
not, we could not traverse the three XOR gadgets using the entry nodes in each triangle. This
concludes our proof.

Q.E.D.

Exercises

Exercise 6.1: Suppose you show that HAM ≤P
m SP . Here, SP is the problem where, given a

graph G = (V, E; s, t, C) with costs on edges, and an integer k > 0, we want to decide if there
a path from s to t with cost at most k. What are some consequences of this result? ♦

Exercise 6.2: True or False (you need to explain your answer): Suppose someone proved that
SAT can be solved in deterministic time O(n5). It follows that every problem in NP can
now be solved in deterministic time O(n5). ♦

Exercise 6.3: Complete the reduction of SAT to HAM . Show in particular: if F is satisfiable,
then the graph f(F) has a Hamiltonian circuit, and conversely. ♦

Exercise 6.4: One day, our T.A. Viksung announced excitedly during recitation that he was up
all night, and was able to prove that SAT ≤P

m LCSD where SAT is the satisfiability of
Boolean formulas problem and LCSD is the problem of deciding if two strings X, Y has a
common subsequence of length k (i.e., L(X, Y) ≥ k).
(a) Why should he be so excited with this result?
(b) As it turned out, T.A. Viksung really proved that LCSD ≤P

m SAT (late in the night,
it is easy to confuse this with SAT ≤P

m LCSD). Let us try to reconstruct his proof. Given
X = x1 · · ·xm and Y = y1 · · · yn and k ≥ 0, we want to construct a Boolean formula
F = F (X, Y, k) such that F is satisfiable iff L(X, Y) ≥ k. Assume X, Y ∈ {0, 1}

∗
. Construct

F to have polynomial size in m, n. Introduce mn Boolean variables denoted Mij where
i = 1, . . . , m and j = 1, . . . , n. We want to say that exactly k of these variables that is true.

♦

Exercise 6.5: In §1, we introduce the composite parameter N = max{n, L}. But this simpli-
fication hides some intricacies of individual problems, where they role of n and L may be
very different. We say that a problem is strongly NP-complete if it is NP-complete when
restricted to inputs with L = O(1). Show that TSP is strongly NP -complete. ♦

End Exercises

§7. Postscript

The significance of P ,NP is that P can be identified with the “tractable problems” and NP

contains many important problems of interest for which we do not know how to solve in polynomial

c© Chee-Keng Yap Basic Version May 5, 2008

§7. Postscript Lecture XXX Page 20

time. Almost all of these problems have been shown to be NP -complete. Hence if any of these is
in P then all of them are.

The list has grown to hundreds of problems in all areas of computational literature. Thus it
serves to unify diverse areas.

It also serves as a guide to what problems can be put into P . If your problem of interest looks
similar to an NP-complete problem, you should be careful.

This forces us to consider other “computational modes” such as randomization, parallelization,
or even quantum modes. Another approach is to relax the optimization problem to epsilon-
approximation problems. Another direction is distinguish among the input complexity parameters
of problem, and to improve on the critical exponential parameter. For instance, in many problems,
there are two input parameters say k and n and the exponential behavior is in k alone. An example
is the problem of deciding if a graph has chromatic number at most k. If the graph has n vertices,
then the algorithm is exponential in k but polynomial in k, e.g., O(2kn2). If we can improve the
algorithm to O(2αknO(1)) for some α < 1, then asymptotically, we have a faster algorithm.

References

[1] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W.H. Freeman and Company, San Francisco, 1979.

[2] C. K. Yap. Introduction to the theory of complexity classes, 1987. Book Manuscript. Prelimi-
nary version (on ftp since 1990),
URL ftp://cs.nyu.edu/pub/local/yap/complexity-bk.

c© Chee-Keng Yap Basic Version May 5, 2008

