
§1. Minimum Path Problems Lecture XIV Page 1

Lecture XIV

MINIMUM COST PATHS

“The shortest path between two truths in the real domain passes through the complex
domain.”

– Jacques Salomon Hadamard (1865–1963)

We study digraphs with edge cost functions. Several problems studied under “pure” graphs
in Chapter 4 is thereby generalized. Connectivity becomes considerably more interesting in the
presence of cost functions. Connectivity has to do with paths. Suppose PATH(u, v) denote the set
of all paths from vertex u to vertex v. The basic problem here is to find a path π ∈ P (u, v) whose
cost is minimum. The dynamic programming principle is at work in such problems. Minimum
cost path algorithms can take advantage of the special nature of the cost function in the following
cases:

• All edges have unit cost

• Positive edge costs

• Sparse graph (i.e., most edges have cost ∞)

• Edge costs are symmetric (i.e., we are dealing with bigraphs)

We have already studied the case of unit edge costs – the algorithm here is breadth first search
(BFS). The key algorithmic feature of BFS is the use of a FIFO queue. When generalized to
arbitrary positive edge costs, we must replace this FIFO queue by a priority queue. We will also
see how to take advantage of sparse graphs as well as bigraphs.

We can generalize shortest path problems to computations over semirings. The important
problem of transitive closure problem arises through this generalization.

§1. Minimum Path Problems

Let G = (V, E; C) be a digraph with edge cost function

C : E → R.

We may extend the cost function C to the cost matrix C′ : V 2 → R ∪ {∞} where

C′(u, v) =






C(u, v) if (u, v) ∈ E,
0 if u = v,
∞ else.

Normally, we continue to write C for C′. The simplest cost function is unit cost where C(e) = 1
for all e ∈ E; this can be generalized to positive cost functions where C(e) > 0. In constrast to
positive costs, we may speak of “general” cost functions to emphasize the possibility of negative
costs.

c© Chee-Keng Yap Basic Version June 13, 2008

§1. Minimum Path Problems Lecture XIV Page 2

Convention. The size parameters for complexity considerations are, as usual, n = |V | and
m = |E|. We usually let V = {1, . . . , n}.

Minimum cost paths. Let p = (v0−, . . . ,−vk) be a path of G, i.e., (vi−1, vi) ∈ E for i =
1, . . . , k. The C-cost of p is defined to be

C(p) :=

k∑

i=1

C(vi−1, vi).

In case of the empty path (k = 0), we define C(p) = 0. Call p a C-minimum cost path if there
are no other paths from v0 to vk with smaller cost; then C(p) is the C-minimum cost from v0

to vk, denoted
δ(v0, vk) = δC(v0, vk) = C(p).

Reference to C may be omitted when it is understood or irrelevant. For short, we say “minimum
path” (or min-paths) instead of “minimum cost path”. It is also very common to say “shortest
path” for min-paths.

If there is no path from i to j, let δ(i, j) := ∞. A cycle [v0−, . . . ,−vk] is called called a

negative cycle if
∑k

i=0 C(vi, vi+1) < 0 (where vk+1 = v0. In case there exist paths from i to j
with arbitrarily negative costs, we define δ(i, j) := −∞. This situation obtains if there is a path
from i to j that contains a negative cycle. Thus we can view δ as a matrix, the C-minimum cost
matrix

δC : V 2 → R ∪ {±∞}.

Minimum path problems. There are three basic versions:

• Single-pair minimum paths Given an edge-costed digraph G = (V, E; C, s, t) with source
and sink s, t ∈ V , find the minimum path from s to t.

• Single-source minimum paths Given an edge-costed digraph G = (V, E; C, s) with source
s ∈ V , find the minimum paths from s to each t ∈ V .

• All-pairs minimum paths Given an edge-costed digraph G = (V, E; C), find the minimum
paths between from s to t for all s, t ∈ V .

When there does not exist a minimum path from i to j for one of the pairs (i, j) that is asked
for, we are expected to detect this and output δ(i, j) = ∞ or δ(i, j) = −∞; in the latter case,
we further output a path from i to j containing a negative cycle. Usually, these problems are
stated for digraphs. Although the bigraphs can be viewed as special cases of digraphs for the
purposes of these problems, we need to be careful in the presense of negative edges. Otherwise,
any negative bi-directional edge immediately give us a negative cycle. Special techniques can be
used for bigraphs (see §8 and §9).

Clearly the three problems are in order of increasing difficulty. But you will not encounter
any algorithm that is expressedly designed for the first problem (single-pair case). This is because
every known algorithm for the single-pair problem is essentially also a solution to the single-source
problem. It would be nice to prove that this is necessarily so.

c© Chee-Keng Yap Basic Version June 13, 2008

§1. Minimum Path Problems Lecture XIV Page 3

Minimum cost versions. There is a simpler version of each of the above problems, viz., where
we ask for the minimum cost δ(i, j) instead of the minimum path from i to j (for various i, j de-
pending on the problem). We call this the min-cost version of the corresponding shortest path
problem. Usually1 the min-cost algorithms can easily be modified to also compute the min-path
as a by-product, without affecting the asymptotic complexity. Intuitively, this is because the min-
imum costs constitute the critical information that drives these algorithms. So it is pedagogically
advantageous to present only the min-cost version of these algorithms. We generally adopt this
strategy.

Dynamic programming principle. The dynamic programming principle (Chapter 7) applies
to minimum paths: subpaths of minimum paths are minimum paths. Indeed, the simplification
from minimum solution instances to minimum costs is also a feature of dynamic programming.

Path Length and Link Distance. If C is the unit cost then C(p) = k is just the length
of the path p = (v0, . . . , vk). Consistent with this “length” terminology, we might call paths of
minimum length a “shortest path”. Unfortunately, the literature also use “shortest path” for the
general min-path. To avoid ambiguity, we adopt another terminology found in the literature: the
minimum length of a path from i to j may be called the link distance from i to j. Say j is
reachable from i if the link distance from i to j is finite.

Link-bounded minimum paths. Let k be a non-negative integer. We define a path to be the
exact k-link minimum path if it has minimum cost among all k-link paths from its source to
its terminus. Let δ(=k)(i, j) denote the cost of an exact k-link minimum path from i to j and we
again have the exact k-link minimum cost matrix δ(=k). We can also consider at most k links:
the corresponding matrix is given by

δ(k)(i, j) =
k

min
ℓ=0

δ(=ℓ)(i, j).

Call δ(k) the k-link minimum cost matrix. Unlike the δ matrix, δ(k) never attain −∞. If there
are no negative cycles, it is easy to see that

δ(n−1) = δ.

Minimum path tree. Our single-source path algorithms construct a set of minimum paths that
comes from a single tree rooted at the source. By a minimum path tree of G = (V, E; C) we
mean a finite rooted tree T such that the paths from the root to every vertex in the tree is a
minimum path; moreover, every node reachable from the root appears in T . Under unit cost, this
tree is just the a breadth first search (BFS) tree. If s can reach a negative cycle, then the minimum
path tree rooted at s is not defined. The following is a characterization of minimum path trees.

Lemma 1 (minimum path tree). Suppose that T ⊆ E is a tree rooted at s ∈ V and T spans the
set of nodes reachable from s. For any node i in the tree, let d(i) denote the cost from s to i along
a path of T . Then T is a minimum path tree iff for all (i, j) ∈ E, d(j) ≤ d(i) + C(i, j).

Exercises

1See the Exercises for exceptions to this remark.

c© Chee-Keng Yap Basic Version June 13, 2008

§2. Single-source Problem: General Cost Lecture XIV Page 4

Exercise 1.1: Considers the following shortest path problem: each node u has a weight W (u)
and the cost of edge (u, v) is W (v)−W (u). Give an O(m) algorithm to solve the minimum
cost version of the single source minimum path problem. Can you convert this algorithm
into one that actually produce the minimum paths? ♦

Exercise 1.2: Another variation of shortest paths is to assign costs to the vertices. The cost of
a path is the sum of the costs of the vertices along the path. Reduce this vertex-costed
version of minimum paths to the original edge-costed version. ♦

Exercise 1.3: Let B := min{C(e) : e ∈ E} < 0 and let p be a path with cost C(p) < (n − 1)B.
Show the following:
(a) The path p contains a negative cycle.
(b) The bound (n− 1)B is the best possible.
(c) If Z is a negative cycle then Z contains a simple negative subcycle. The same is true of
positive cycles. ♦

Exercise 1.4: Prove the minimum path tree lemma. ♦

End Exercises

§2. Single-source Problem: General Cost

We begin with an algorithm for general cost functions, due to Bellman (1958) and Ford (1962).
We assume that the input digraph has the adjacency-list representation. Assuming V = {1, . . . , n}
and 1 is the source, we want to compute δ(1, i) = δ1(i) for each i = 1, . . . , n.

The Bellman-Ford algorithm is simple, and uses only an array c[1..n] as datastructure. At the
conclusion of the algorithm, c[i] =
delta1(i). To bring out the main ideas, we first give a simplified version that is correct provided
no negative cycle is reachable from vertex 1. In fact, we can say somewhat more about the output
of the simplified algorithm in general (negative cycle or no):

Correctness Criteria: The array c at the end of the algorithm is a realizable (n− 1)-bound.

For any k ≥ 0, we call c[1..n] a realizable k-bound if for each i ∈ [1..n],

(a) (Lower bound) c[i] ≤ δ
(k)
1 (i).

(b) (Upper bound/Realizability) There is a path from 1 to i with cost c[i].
Thus a realizable k-bound is both a lower bound and an upper bound, given by

δ
(k)
1 (i) ≥ c[i] ≥ δ1(i), i ∈ [1..n].

From (a) and (b), we conclude that c[i] =∞ means there is no path from 1 to i.

c© Chee-Keng Yap Basic Version June 13, 2008

§2. Single-source Problem: General Cost Lecture XIV Page 5

Simple Bellman-Ford Algorithm:

Input: (V, E; C, s) where V = [1..n] and s = 1.
Output: Array c[1..n] as described above.
⊲ INITIALIZATION

c[1]← 0
for all i← 2 to n, c[i]←∞

⊲ MAIN LOOP
for k ← 1 to n− 1

Phase() ⊳ see below

The main loop consists of n− 1 identical phases described as follows:

Phase()
for all (u, v) ∈ E

c[v]← min{c[v], c[u] + C(u, v)}

The initialization is regarded as the zeroth phase. It is clear that each phase takes O(m) time
for an overall complexity of O(mn).

Lemma 2 (Invariance). At the end of the kth phase (k ≥ 0), the array c[1..n] is a realizable
k-bound.

Proof. This is immediate for k = 0 so assume k ≥ 1. Let v ∈ [1..n] and c[v] < ∞. First we
show that c[v] is realizable, i.e., there is a path from 1 to v with cost c[v]. If c[v] is unchanged in
the kth phase, then this follows by induction. Otherwise it is updated as c[u] + C(u, v) for some
u. Clearly c[u] <∞ and so it represents the cost of some path p from 1 to u. Thus c[v] is now the
cost of p; (u, v). This proves realizability of c. Next we must show that c[v] ≤ δ(k)(v). If δ(k)(v)
represents the cost of a path from 1 to v of length less than k, then the desired inequality follows
by induction: c[v] ≤ δ(k−1)(v) = δ(k)(v). Otherwise, δ(k)(v) is the cost of a path of length k. Let
this path be p; (u, v) for some u. By induction, the previous value of c[u] is ≤ C(p). Because of
our update method, c[v] ≤ c[u] + C(u, v). Hence c[v] ≤ C(p) + C(u, v) = δ(k)(v). Q.E.D.

In the absence of negative cycles, δ = δ(n−1). Then the output array c represents δ1, as desired.

Bellman-Ford in the presence of negative cycles. We now remove our assumption about
no negative cycles.

Lemma 3 (Negative Cycle Test). Let c[1..n] be a realizable (n− 1)-bound.
(a) If there are no negative cycles reachable from 1 then for all i, j ∈ [1..n], c[j] ≤ c[i] + C(i, j).
(b) If Z is a negative cycle reachable from 1 then c[j] > c[i] + C(i, j) holds for some edge (i, j) in
Z.

Proof. (a) If no negative cycle is reachable, then no optimum path from 1 has length more than

n− 1. Hence c[i] ≤ δ
(n−1)
1 (i) implies c[i] = δ

(n−1)
1 (i) = δ1(i). The desired inequality follows from

δ(j) ≤ δ(i) + C(i, j). (b) By way of contradiction, suppose c[j] ≤ c[i] + C(i, j) for all edges (i, j)

c© Chee-Keng Yap Basic Version June 13, 2008

§2. Single-source Problem: General Cost Lecture XIV Page 6

in a reachable negative cycle Z. Summing over all edges in Z,

∑

(i,j)∈Z

c[j] ≤
∑

(i,j)∈Z

(c[i] + C(i, j))

≤ C(Z) +
∑

(i,j)∈Z

c[i].

Cancelling the summation on each side, we see that 0 ≤ C(Z), a contradiction. Q.E.D.

We can use this lemma to detect if there are any negative cycles reachable from 1 in the simple
Bellman-Ford algorithm. We can also use it to justify a general Bellman-Ford algorithm which
compute δ1 for an arbitrary input graph.

General Bellman-Ford Algorithm:

Input: (V, E; C, s) with V = [1..n] and s = 1.
Output: Array c[1..n] representing δ1.
⊲ INITIALIZATION

(as in Simple Bellman-Ford Algorithm)
⊲ MAIN LOOP

(as in Simple Bellman-Ford Algorithm)
⊲ END LOOP:

for k ← 1 to n
Phase() ⊳ as before

End Phase() ⊳ see below

The End Phase is a simple modification of the Phase computation:

End Phase()
for all (u, v) ∈ E

if (c[v] > c[u] + C(u, v)) then c[v]← −∞.

After n iterations of this, it is easy to see that c[1..n] represents δ1. Moreover, the asymptotic
complexity of the original algorithm is preserved.

Minimum paths. We indicate how the minimum paths can be computed by a simple modifi-
cation to the above algorithm. We maintain another array p[1..n], initialized to nil. Each time we
update c[v] to some c[u] + C(u, v), we also update p[v]← u. It is easy to see that the set of edges
{(v, p[v]) : v ∈ V, p[v] 6= nil} forms a minimum path tree.

Exercises

Exercise 2.1: After phase k in the simple Bellman-Ford algorithm, c[v] is the cost of a path from
1 to v of length at most km (m = |E|). ♦

c© Chee-Keng Yap Basic Version June 13, 2008

§3. Single-source Problem: Positive Costs Lecture XIV Page 7

Exercise 2.2:
(a) Show that using n − 1 phases, followed by n end phases in the general Bellman-Ford
algorithm is the best possible.
(b) Suppose we mark a vertex j to be active (for the next phase) if the value c[j] is decreased
during a phase. In the next phase, we only need to look at those edges out of active vertices.
Discuss how this improvement affect the complexity of the Bellman-Ford algorithm. ♦

Exercise 2.3: Suppose R is an n × n matrix where Ri,j > 0 is the amount of currency j that
you can buy with 1 unit of currency i. E.g., if i represents British pound and j represents
US dollar then Ri,j = 1.8 means that you can get 1.8 US dollars for 1 British pound. A
currency transaction is a sequence c0, c1, . . . , cm of m ≥ 1 currencies such that you start
with one unit of currency c0 and use it to buy currency c1, then use the proceeds (which is a
certain amount in currency c1) to buy currency c2, etc. In general, you use the proceeds of
the ith transaction (which is a certain amount of currency ci) to buy currency ci+1. Finally,
you obtain a certain amount T (c0, c1, . . . , cm) of currency cm.

(a) We call (c0, c1, . . . , cm) an arbitrage situation if cm = c0 and T (c0, c1, . . . , cm) > 1.
Characterize an arbitrage situation in terms of the matrix R.

(b) Give an efficient algorithm to detect an arbitrage situation from an input matrix R.
What is the complexity of your algorithm? NOTE: Assuming no transaction costs, it is clear
that international money bankers can exploit arbitrage situations.

♦

Exercise 2.4: In the previous question, the algorithm outputs any arbitrage situation. Let
(i0, i1, . . . , im) be an arbitrage situation where im = i0 and T (i0, i1, . . . , im) < 1 as before. We
define the inefficiency of this arbitrage situation to be the product (m × T (i0, i1, . . . , im).
Thus the large m or T (i0, . . . , im) is, the less efficient is the arbitrage situation. Give an
efficient algorithm if detect the most efficient arbitrage situation. ♦

End Exercises

§3. Single-source Problem: Positive Costs

We now solve the single-source minimum cost problem, assuming the costs are positive. The
algorithm is from Dijkstra (1959). The input graph is again assumed to have adjacency-list repre-
sentation.

The idea is to grow a set S of vertices, with S initially containing just the source node, 1. The
set S is the set of vertices whose minimum cost from the source is known (as it turns out). Let
U := V \ S denote the complementary set of “unknown vertices”.

This algorithm has the same abstract structure as Prim’s algorithm for minimum spanning
tree. We maintain an array d[1..n] of real values where d[i] is the current approximation to δ1(u).
Inductively, the array d[1..n] satisfies the following invariant:

(A) For each u ∈ V , we have d[u] = min
v∈S
{d[v] + C(v, u)}.

c© Chee-Keng Yap Basic Version June 13, 2008

§3. Single-source Problem: Positive Costs Lecture XIV Page 8

s

v

U

S

u

Figure 1: Illustrating Dijkstra’s Invariant

(B) If u ∈ S then d[u] is equal to δ1(u), the mininum cost from 1 to u.

We may interpret d[u] as the minimum cost of all paths from 1 to u whose intermediate vertices
are restricted to S. It follows from invariants (A) and (B) that

d[u] ≥ δ1(u), (u ∈ V). (1)

To see this, note that invariant (B) implies that for each u ∈ S, there is a path from 1 to u with
cost d[u]. For all v ∈ V , invariant (A) says that d[v] corresponds to the cost of an actual path from
1 to v. This cost cannot be less than δ1(v), as claimed.

Lemma 4. Assume invariants (A) and (B). Let u0 ∈ V \ S such that

d[u0] = min{d[i] : i ∈ V \ S}.

Then d[u0] = δ1(u0).

Proof. Suppose p is a minimum path from 1 to u0. Then we can decompose p into the form

p = p′; (v, u); p′′

where v ∈ S and u ∈ V \ S. See figure 1. Note that C(p′) = δ1(v). Then

d[u0] ≤ d[u] (choice of u0)
≤ d[v] + C(v, u) (invariant (B))
= δ1(v) + C(v, u) (invariant (A))
= C(p′) + C(v, u) (dynamic programming principle)
≤ C(p) (since costs are positive)
= δ1(u0). (choice of p)

Combined with equation (1), we conclude that d[u0] = δ1(u0). Q.E.D.

This lemma shows that if we extend S to S′ := S ∪ {u0}, invariant (A) is preserved. It is easy
to see invariant (B) can also be preserved by updating the value of d[i] for each i ∈ V \ S′ using
the following equation:

d[i]← min{d[i], d[u0] + C(u0, i)}. (2)

Moreover, we only need update those i that are adjacent to u0. The repeated extension of the set
S while preserving invariants (A) and (B) constitutes Dijkstra’s algorithm.

c© Chee-Keng Yap Basic Version June 13, 2008

§3. Single-source Problem: Positive Costs Lecture XIV Page 9

Let us now summarize the algorithm. First, let the dynamic set U = V \ S be stored in a
min-priority queue Q, using d[i] as the priority of vertex i ∈ U . The queue is assumed2 to support
the DecreaseKey operation, which is needed in updating d[i] á la equation (2).

Dijkstra’s Algorithm:

Input: (V, E; C, s) where V = [1..n] and s = 1.
Output: Array d[1..n] with d[i] = δ1(i).
⊲ INITIALIZATION

1. d[1]← 0; Initialize an empty queue Q.
2. for i← 2 to n, d[i]←∞,
3. for i← 1 to n, Q.Insert(i, d[i]).

⊲ MAIN LOOP
4. while Q 6= ∅ do

5. u0 ← Q.DeleteMin()
6. for all i adjacent to u0 do

7. if d[i] > d[u0] + C(u0, i) then

8. d[i]← d[u0] + C(u0, i)
9. Q.DecreaseKey(i, d[i])

end{while}

A

B

C

D

G

7

1110

F

2

16

4

9

1

3

7

10

11

E

Figure 2: Illustrating Dijkstra’s Algorithm

Hand Simulation. Let us perform a hand-simulation of this algorithm using the graph in fig-
ure 2. Let the source node be A. The array d[i] is initialized to ∞ with d[A] = 0. It is updated at
each stage: we have underlined the entry that is the minimum extracted for that stage, and only
updated entries of that stage are explicitly indicated:

2This assumption is equivalent to the ability to delete an arbitrary element from the queue. For, DecreaseKey
of x can be viewed as a deletion of x followed by an re-insertion of x with the new priority. Conversely, if we have
DecreaseKey, then we can delete an arbitrary element by decreasing its priority to −∞ followed by a removeMin.

c© Chee-Keng Yap Basic Version June 13, 2008

§3. Single-source Problem: Positive Costs Lecture XIV Page 10

VERTICES A B C D E F G
STAGE 0 0 ∞ ∞ ∞ ∞ ∞ ∞
STAGE 1 0 7 1 10 11
STAGE 2 1 17
STAGE 3 7 9 16
STAGE 4 9 16
STAGE 5 11 15
STAGE 6 15
STAGE 7 16

Complexity. Assume Q is implemented by Fibonacci heaps. The initialization (including inser-
tion into the queue Q) takes O(n) time. In the main loop, we do n− 1 DeleteMins and at most m
DecreaseKeys. [To see this, we may charge each DecreaseKey operation to the edge (u0, i) used to
test for adjacency in step 8.] This costs O(m + n log n), which is also the complexity of the overall
algorithm.

We ought to note that if the graph is sparse (say, with Ω(n2/ logn) edges) then a more straight-
forward algorithm might be used that dispenses with the queue. Instead, to find the next minimum
for the while loop, we just use an obvious O(n) search. The resulting algorithm has complexity
O(n2). The details are left as an exercise.

Exercises

Exercise 3.1: Show that c[v] is the minimum cost of paths from 1 to v whose intermediate vertices
are restricted to S. ♦

Exercise 3.2: Carry the hand-simulation of Dijkstra’s algorithm for the graph in Figure 2, but
using the edge costs C9(e) defined as follows: C9(e) = C(e) + 9 if C(e) ≤ 9, and C9(e) =
C(e)− 9 if C(e) > 9. ♦

Exercise 3.3: Show that Dijstra’s algorithm may fail if G has negative edge weights (even without
negative cycles). ♦

Exercise 3.4: Show that the set S satisfies the additional property that each node in U = V \ S
is at least as close to the source 1 as the nodes in S. Discuss potential applications where
Dijkstra’s algorithm might be initialized with a set S that does not satisfy this property (but
still satisfy properties (A) and (B), so that the basic algorithm works). ♦

Exercise 3.5: Give the programming details for the “simple” O(n2) implementation of Dijstra’s
algorithm. ♦

Exercise 3.6: Convert Dijkstra’s algorithm above into a minimum path algorithm. ♦

Exercise 3.7: Justify this remark: if every edge in the graph has weight 1, then the BFS algorithm
is basically like Dijkstra’s algorithm. ♦

c© Chee-Keng Yap Basic Version June 13, 2008

§4. Semirings Lecture XIV Page 11

Exercise 3.8: (D.B. Johnson) Suppose that G have negative cost edges, but no negative cycle.
(i) Give an example that cause Dijstra’s algorithm to break down.
(ii) Modify Dijstra’s algorithm so that each time we delete a vertex u0 from the queue Q, we
look at all the vertices of V (not just the vertices adjacent to u0). For each i ∈ V , we update
c[i] in the usual way (line 9 in Dijkstra’s algorithm). If c[i] is unchanged, we do nothing, so
suppose c[i] is decreased. If i is in the queue, we do DecreaseKey on i as before; otherwise
we reinsert i into Q. Prove that this modification terminates with the correct answer.
(iii) Choose the vertex u0 carefully so that the algorithm in (ii) is O(n3). ♦

Exercise 3.9: Let C1, C2 be two positive cost matrices on [1..n]. Say a path p from i to j is
(C1, C2)-minimum if for all paths q from i to j, C1(q) ≥ C1(p), and moreover, if C1(q) =
C1(p) then C2(q) ≥ C2(p). E.g., if C2 is the unit cost function then a (C1, C2)-minimum
path between u and v is a C1-minimum cost path such that its length is minimum among all
C1-minimum paths between u and v. Solve the single-source minimum cost version of this
problem. ♦

End Exercises

§4. Semirings

Before considering the all pairs minimum cost problems, let us recall some facts about matrix
rings.

Let us first informally review some college algebra: a ring is a set R with two special values
0, 1 ∈ R and three binary operations +,−,× defined satisfying certain axioms. The integers Z is
the simplest example of a ring. Indeed, a ring basically obeys all the algebraic laws you expect to
hold for integers Z under the usual +/−/× operations. E.g., the distributive law x(y+z) = xy+xz
holds for integers, and it is an axiom for rings. The only exception is the commutative law for
multiplication, xy = yx. This law need not hold in rings. The rings that satisfy this law is called
a commutative ring.

The set of square n × n matrices whose entries are integers forms another ring, the integer
matrix ring Mn(Z). Note that Mn(R) is no longer commutative for n ≥ 2. A matrix A whose
(i, j)-th entry is Ai,j will be written A = [Ai,j]

n
i,j=1. We often simplify this to A = [Ai,j] or

A = [Aij] or A = [Aij]i,j . This should not be confused with the notation (A)ij denoting the (i, j)-
th entry of matrix A. Recall the usual multiplication of numerical matrices: if A = [Aij], B = [Bij]
then their product AB is C = [Cij] where

Cij =
k∑

i=1

AikBkj . (3)

Let us now proceed somewhat more formally: a ring

(R, +,×, 0, 1).

By definition3 this means the set R satisfies the following axioms.
(i) (R, +, 0) is an Abelian group,

3All our rings have a multiplicative identity usually denoted 1: x · 1 = 1 · x = x. We call 1 the unity element.

c© Chee-Keng Yap Basic Version June 13, 2008

§4. Semirings Lecture XIV Page 12

(ii) (R,×, 1) is a monoid,
(iii) × distributes over +.

We simply refer to the set R as the ring if the other data (+,×, 0, 1) are understood and the
product a × b (for a, b ∈ R) is also written as ab or a · b. For n ≥ 1, we have another ring with
unity,

(Mn(R), +n,×n, 0n, 1n)

where Mn(R) is the set of n-square matrices with entries in R. We call Mn(R) a matrix ring over
R. Addition of matrices, A +n B, is defined componentwise. The product A ×n B of matrices is
defined as in equation (3). The additive and multiplicative identities of Mn(R) are (respectively)
the matrix 0n with all entries 0 and the matrix 1n of 0’s except the diagonal elements are 1’s.

Let MM(n) denote the number of ring operations in R necessary to compute the product of two
matrices in Mn(R). The problem of determining MM(n) has been extensively studied ever since
Strassen (1969) demonstrated that the obvious MM(n) = O(n3) bound is suboptimal. The current
record is from Coppersmith and Winograd (1987):

MM(n) = O(n2.376).

Connection to shortest paths. Problems on minimum paths has an underlying algebraic
structure that is similar to matrix multiplication. To see this connection, note that the cost of an
exact 2-link minimum path path from vertex i to j is given by

δ(2)(i, j) =
n

min
k=1

C(i, k) + C(k, j).

This expression is analogous to equation (3), except that we have replaced summation by mini-
mization, and product by summation. Hence computing the exact 2-link minimum costs between
all pairs of vertices is equivalent to the problem of matrix multiplication where the matrices have
elements from a certain ring-like structure:

(R ∪ {±∞}, min, +,∞, 0)

where ∞ and 0 are the respective identities for the minimization and addition operation. Also,

(−∞) + x =

{
−∞ if x 6=∞,
∞ if x =∞.

In fact, the only thing this structure lacks to make it a ring is an inverse for minimization. Such
structures are quite pervasive, and is studied abstractly as semirings:

Definition 1. A semiring (R,⊕,⊗, 0, 1) is an algebraic structure satisfying the following prop-
erties. We call ⊕ and ⊗ the additive and multiplicative operations of R.

1) [Additive monoid] (R,⊕, 0) is an Abelian monoid.
2) [Multiplicative monoid] (R,⊗, 1) is a monoid.
3) [Annihilator] 0 is the annihilator under multiplication: x⊗ 0 = 0⊗ x = 0.
4) [Distributivity] Multiplication distributes over addition:

(a⊕ b)⊗ (x⊕ y) = (a⊗ x)⊕ (a⊗ y)⊕ (b ⊗ x)⊕ (b⊗ y)

Algebraists sometimes consider rings with such a unity element. Algebraic structures such as rings, groups, etc,
are sets S together with operations o1, o2, etc, and are written (S, o1, o2, . . .). A constant is just a 0-ary operation.
An algebraic structure (M, +, 0) is a monoid if + is an associative binary operation on M with 0 as an identity. A
standard example of a monoid is the set of strings over an alphabet under the concatenation operation, with the
empty string as identity. Incidentally, dropping the identity of a monoid gives us a semigroup. A group (G, +, 0)
is a monoid where + has an inverse relative to 0, i.e., for all x there is a y such that x + y = 0. We write −x for
the inverse of x. A monoid or group is Abelian when its operation is commutative. When using ‘+’ for the group
operation, we denote the inverse of an element x by −x.

c© Chee-Keng Yap Basic Version June 13, 2008

§4. Semirings Lecture XIV Page 13

The reader may check that semirings are indeed rings save for the additive inverse.

Examples of semirings. Of course, a ring R is automatically a semiring. When viewing R as a
semiring, instead of the Abelian group axioms for (R, +, 0), we simply require that it be a monoid
with commutativity. Moreover, the axiom that 0 is a multiplicative annihilator must be explicitly
stated, whereas it was previously implied by the ring axioms (exercise above). The following are
examples of semirings that are not rings.

1. The “canonical example” of a semiring is the natural numbers (N, +,×, 0, 1). It is useful to
test all concepts about semirings against this one.

2. Another important semiring is

(R ∪ {±∞}, min, +, +∞, 0) (4)

as noted above. For reference, call this the minimization semiring. Note4 that the anni-
hilator axiom implies∞+(−∞) =∞. Any subring S ⊆ R induces a sub-semiring S∪{±∞}
of this real minimization semiring. Be careful that the “multiplication” in the minimization
semiring is ordinary addition! To avoid confusion, we may say “semiring multiplication” to
refer to +, or “semiring addition” to refer to min, when viewing R ∪ {±∞} as a semiring.

3. Naturally, there is an analogous (real) maximization semiring,

(R ∪ {±∞}, max, +,−∞, 0). (5)

But in this semiring, ∞+ (−∞) = −∞.

4. If we restrict the costs to be non-negative, we get a closely-related positive minimization
semiring,

(R≥0 ∪ {∞}, min, +,∞, 0). (6)

5. The Boolean semiring is ({0, 1},∨,∧, 0, 1) where ∨ and ∧ is interpreted as the usual
Boolean-or and Boolean-and operations. We sometimes write B2 := {0, 1}.

6. The powerset semiring is (2S ,∪,∩, ∅, S) where S is any set and 2S is the power set of S.

7. The language semiring is (2Σ∗

,∪, ·, ∅, {ǫ}) where Σ is a finite alphabet and 2Σ∗ is the power
set of the set Σ∗ of finite strings over Σ, and ǫ is the empty string. For sets A, B ⊆ Σ∗, we
define their concatenation A · B = {a · b : a ∈ A, b ∈ B}.

8. The min-max semiring is ([0, 1], min, max, 1, 0) with the obvious interpretation. Of course,
the max-min semiring is similar.

We let the reader verify that each of the above structures are semirings. As for rings, we can
generate infinitely many semirings from an old one:

Lemma 5. If R is a semiring, then the set Mn(R) of n-square matrices with entries in R is also
a semiring with componentwise addition and multiplication analogous to equation (3).

The verification of this lemma is left to the reader. We call Mn(R) a matrix semiring (over
R). Note that the multiplication of two matrices in Mn(R) takes O(n3) semiring operations; in
general, nothing better is known because the sub-cubic bounds on MM(n) which we noted above
exploits the additive inverse of the underlying ring.

4In standard extensions of the real numbers to ±∞, it is stipulated that ∞ + (−∞) is undefined.

c© Chee-Keng Yap Basic Version June 13, 2008

§5. Closed Semirings Lecture XIV Page 14

Complexity of multiplying Boolean matrices. For Boolean semiring matrices, we can obtain
a subcubic bound by embedding their multiplication in the ring of integer matrices. More precisely,
if A, B are Boolean matrices, we view them as integer matrices where the Boolean values 0, 1 are
interpreted as the integers 0, 1. If AB denotes the product over Z, it is easy to see that if we replace
each of the non-zero elements in AB by 1, we obtain the correct Boolean product. To bound the
bit complexity of this embedding, we must ensure that the intermediate integers do not get large.
Note that each entry in AB can be computed in O(log n) bit operations. Thus, if MM2(n) denotes
the bit complexity of Boolean matrix multiplication, we have

MM2(n) = O(MM(n) lg n). (7)

§5. Closed Semirings

The non-ring semirings we have introduced above can be extended as follows:

Definition 2. A semiring (R,⊕,⊗, 0, 1) is said to be closed if for any countably infinite sequence
a1, a2, a3, . . . in R, the countably infinite sum

⊕

i≥1

ai

is defined, and satisfies the following properties:
0) [Compatibility]

a0 ⊕




⊕

i≥1

ai



 =
⊕

j≥0

aj .

1) [Countable Zero] The ai’s are all zero iff
⊕

i≥1 ai = 0.
2) [Countable Associativity] ⊕

i≥1

ai =
⊕

i≥1

(a2i−1 ⊕ a2i).

3) [Countable Commutativity] ⊕

i≥1

⊕

j≥1

aij =
⊕

j≥1

⊕

i≥1

aij .

4) [Countable Distribution] Multiplication distributes over countable sums:

(
⊕

i≥1

ai)⊗ (
⊕

j≥1

bj) =
⊕

i,j≥1

(ai ⊗ bj).

Let us note some consequences of this definition.
1. By the compatibility and countable zero properties, we can view an element a as the countable
sum of a, 0, 0, 0,
2. Using compatibility and associativity, we can embed each finite sum into a countable sum. E.g.,
a⊕ b is equal to the countable sum of a, b, 0, 0, 0, Henceforth, we say countable sum to cover
both the countably infinite and the finite cases.
3. If σ is any permutation of the natural numbers then

⊕

i≥0

ai =
⊕

i≥0

aσ(i).

To see this, define aij = ai if σ(j) = i, and aij = 0 otherwise. Then
⊕

i ai =
⊕

i

⊕
j aij =⊕

j

⊕
i aij =

⊕
j aσ(j).

c© Chee-Keng Yap Basic Version June 13, 2008

§5. Closed Semirings Lecture XIV Page 15

4. If b1, b2, b3, . . . is a sequence obtained from a1, a2, a3, . . . in which we simply replaced some pair
ai, ai+1 by ai ⊕ ai+1, then the countable sum of the b’s is equal to the countable sum of the a’s.
E.g., b1 = a1 ⊕ a2 and bi = ai+1 for all i ≥ 2.

All our examples of non-ring semirings so far can be viewed as closed semirings by an obvious
extension of the semiring addition to the countably infinite case. Note that “min” in the real
semirings should really be “inf” when viewed as closed semiring. A similar remark applies for
“max” versus “sup”.

The definition of countable sums in the presence of commutativity and associativity is quite
non-trivial. For instance, in the ring of integers, the infinite sum 1 − 1 + 1 − 1 + 1 − 1 + · · · is
undefined because, by exploiting commutativity, we can make it equal to any integer we like. In
terms of minimum paths, closed semirings represent our interest in finding the minimum costs of
paths of arbitrary length rather than paths up to some finite length.

For any closed semiring (R,⊕,⊗, 0, 1), we introduce an important unary operation: for x ∈ R,
we define its closure to be

x∗ := 1⊕ x⊕ x2 ⊕ x3 ⊕ · · ·

where xk, as expected, denotes the k-fold self-application of ⊗ to x. We call xk the kth power of
x. Note that x∗ = 1 ⊕ (x ⊗ x∗). For instance, in the real minimization semiring, we see that x∗

is 0 and −∞, depending on whether x is non-negative or negative. When R is a matrix semiring,
the closure of x ∈ R is usually called transitive closure. Computing the transitive closures is an
important problem. In particular, this is a generalization of the all-pairs minimum cost problem.
The transitive closure of Boolean matrices corresponds to the all-pairs reachability problem of
graphs.

Idempotent Semirings. In all our examples of closed semirings, we can verify that the semiring
addition ⊕ is idempotent:

x⊕ x = x

for all ring elements x. Some authors include idempotence as an axiom for semirings. To show
that this axiom is non-redundant, observe that the following structure

(N ∪ {∞}, +,×, 0, 1)

is a closed semiring if we interpret +,× in the ordinary way. This semiring addition is, of course,
not idempotent. For a finitary example of a closed semiring that is not idempotent, consider

({0, 1,∞}, +,×, 0, 1).

Under idempotence, countable sums is easier to understand. In particular, ⊕i≥1ai depends only
on the set of distinct elements among the ai’s.

We can introduce a partial order ≤ in an idempotent semiring (R,⊕,⊗, 0, 1) by defining

x ≤ y iff (x⊕ y) = y.

To check that this is a partial order: Clearly x ≤ x. If x ≤ y and y ≤ x then x = y. Finally,
x ≤ y and y ≤ z implies x ≤ z (since x ⊕ z = x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z = y ⊕ z = z). Note that
0 is the minimum element in the partial order, and x ≤ y, x′ ≤ y′ implies x ⊕ y ≤ x′ ⊕ y′. But
be warned that in the minimization semiring R ∪ {±∞}, this definition “≤” is the inverse of the
usual ordering on reals! Instead of defining the closure a∗ operation via countable sum, we can
now directly introducing the closure operation to satisfy the axiom

ab∗c = sup
n≥0

abnc.

c© Chee-Keng Yap Basic Version June 13, 2008

§6. All-Pairs Minimum Cost: Dense Case Lecture XIV Page 16

An idempotent semiring with such a closure operation is called a Kleene algebra (see [1]). This
algebra can be defined independently from semirings.

Exercises

Exercise 5.1: Show that in a ring R: −x = (−1) · x, and x · 0 = 0 · x = 0 for all x ∈ R. ♦

Exercise 5.2: Give examples of groups that are not Abelian. HINT: consider words over the
alphabet {xi, x̄i : i = 1, . . . , n} with the cancellation law xix̄i = x̄ix = ǫ. ♦

Exercise 5.3: Under what conditions does the canonical construction of Z from N extend to give
a ring from a semiring? ♦

Exercise 5.4: Which of the following is true for the closure operator?
(i) (x∗)2 = x∗.
(ii) (x∗)∗ = x∗.
(iii) For all x, y = x∗ is the only solution to the equation y = 1⊕ (x⊗ y). ♦

Exercise 5.5: Generalize the problem of optimal triangulation (lecture 3) so that the weight
function has values in an idempotent semiring. If the semiring product is not commutative,
how do you make the problem meaningful? ♦

End Exercises

§6. All-Pairs Minimum Cost: Dense Case

The input digraph G has a general cost function. Informally, we may take “dense” to mean
that G satisfies m = Θ(n2). To solve the all-pairs problem for G, we could, of course, run Bellman-
Ford’s algorithm for a total of n times, for an overall complexity of O(n2m) = O(n4). We shall
improve on this.

For this problem, we shall represent the costed graph by its cost matrix C = [Ci,j]
n
i,j=1. The

underlying semiring is assumed to the minimization semiring (see (4)). An easy generalization of
an earlier observation (for the case k = 2) gives:

Lemma 6. Let C be a cost matrix regarded as a matrix over the minimization semiring. If Ck =

[C
(k)
ij] is the the kth power of C then Ck is the matrix of the exact k-link minimum cost function

δ(=k): for all i, j,

δ(=k)(i, j) = C
(k)
ij

As corollary, the all-pairs minimum path problem is equivalent to the problem of computing
the transitive closure C∗ of C since for all i, j:

(C∗)ij = inf
k≥0
{C

(=k)
ij }.

c© Chee-Keng Yap Basic Version June 13, 2008

§6. All-Pairs Minimum Cost: Dense Case Lecture XIV Page 17

Since semiring matrix multiplication takes O(n3) time, it follows that we can determine Ck

by k − 1 matrix multiplications, taking time O(n3k). But this can be improved to O(n3 log k) by
exploiting associativity. The method is standard: to compute Ck, we first compute the sequence

C1, C2, C4, . . . , C2ℓ

,

where ℓ = ⌊lg k⌋. This costs O(n3ℓ) semiring operations. By multiplying together some subset
of these matrices together, we obtain Ck. This again takes O(n3ℓ). This gives a complexity of
O(n3 log n) when k = n. In case C has no negative cycles, C∗ = Cn−1 and so the transitive closure
can be computed in O(n3 log n) time.

We next improve this bound using the Floyd-Warshall algorithm5. Another advantange to
the Floyd-Warshall algorithm is that we do not need to assume the absense of negative cycles. To
explain this algorithm, we need to define a k-path (k ∈ [1..n]) of a digraph: a path

p = (v0, v1, . . . , vℓ)

is called a k-path if the vertices in p, with the exception of v0, vℓ, belong to the set [1..k]. Unlike
the k-link cost function δ(k), we impose no bound on the length ℓ of the path p. By extension, we
may say that a 0-path is one of length at most 1. Let

δ[k](i, j)

denote the cost of the minimum cost k-path from i to j. For instance δ[0](i, j) = Cij . It follows
that the following equation holds for k ≥ 1:

δ[k](i, j) = min{δ[k−1](i, j), δ[k−1](i, k) + δ[k−1](k, k)∗ + δ[k−1](k, j)} (8)

where we define for any r ∈ R ∪ {±∞},

r∗ =

{
0 if r ≥ 0,
−∞ if r < 0.

Notice that δ[n](i, j) is precisely equal to δ(i, j). The Floyd-Warshall algorithm simply uses equa-
tion (8) to compute δ[k] for k = 1, . . . , n:

Floyd-Warshall Algorithm:
Input: Cost matrix C which is n by n.
Output: Matrix c[1..n, 1..n] representing δ.
INITIALIZATION

for all i, j = 1 to n do

c[i, j]← Cij

MAIN LOOP

for k = 1 to n do

for all i, j = 1 to n do

(A) c[i, j]← min{c[i, j], c[i, k] + c[k, k]∗ + c[k, j]}

This algorithm clearly takes O(n3) time. The correctness can be proved by induction. Note
that line (A) in the algorithm is not an exact transcription of equation (8) because the matrix
c[1..n, 1..n] is used to store the values of δ[k] as well as δ[k−1]. Nevertheless (as in the Bellman-Ford
algorithm), we have the invariant that in the kth iteration,

δ(i, j) ≤ c[i, j] ≤ δ[k](i, j).

5The method is similar to the standard proof of Kleene’s characterization of regular languages.

c© Chee-Keng Yap Basic Version June 13, 2008

§7. Transitive Closure Lecture XIV Page 18

Exercises

Exercise 6.1: The transitive closure of the cost matrix C was computed as Cn−1 in case C has
no negative cycles. Extend this methods to the case where C may have negative cycles. ♦

Exercise 6.2: Consider the min-cost path problem in which you are given a digraph G =
(V, E; C1, ∆) where C1 is a positive cost function on the edges and ∆ is a positive cost
function on the vertices. Intuitively, C1(i, j) represents the time to fly from city i to city j
and ∆(i) represents the time delay to stop over at city i. A jet-set business executive wants
to construct matrix M where the (i, j)th entry Mi,j represents the “fastest” way to fly from
i to j. This is defined as follows. If π = (v0, v1, . . . , vk) is a path, define

C(π) = C1(π) +

k−1∑

j=1

∆(vj)

and let Mi,j be the minimum of C(π) as π ranges over all paths from i to j. Please show
how to compute M for our executive. Be as efficiently as you can, and argue the correctness
of your algorithm. ♦

Exercise 6.3: Same setting as the previous exercise, but ∆ can be negative. (There might be
“negative benefits” to stopping over at particular cities). For simplicity, assume no negative
cycles. ♦

Exercise 6.4: An edge e = (i, j) is essential if C(e) = δ(i, j) and there are no alternative paths
from i to j with cost C(e). The subgraph of G comprising these edges is called the essential
subgraph of G, and denoted G∗. Let m∗ be the number of edges in G∗.
(i) For every i, j, there exists a path from i to j in G∗ that achieves the minimum cost
δG(i, j).
(ii) G∗ is the union of the n single-source shortest path trees.
(iii) Show some C > 0 and an infinite family of graphs Gn such that G∗

n has ≥ Cn2 edges.
(iv) (Karger-Koller-Phillips, C. McGeoch) Assume positive edge costs. Solve the all-pairs
minimum cost problem in O(nm∗ + n2 log n). HINT: From part (ii), we imagine that we
are constructing G∗ by running n copies of Dijkstra’s algorithm simultaneously. But these n
copies are coordinated by sharing one common Fibonacci heap. ♦

Exercise 6.5: Modify the Floyd-Warshall Algorithm so that it computes the lengths of the first
and also the second shortest path. The second shortest path must be distinct from the
shortest path. In particular, if the shortest path does not exist, or is unique, then the second
shortest path does not exist. In this case, the length is ∞. ♦

End Exercises

§7. Transitive Closure

The Floyd-Warshall algorithm can also be used to compute transitive closures in Mn(R) where
(R,⊕,⊗, 0, 1) is a closed semiring. For any sequence w = (i0, . . . , im) ∈ [1..n]∗, define

C(w) :=

m⊗

j=1

C(ij−1, ij), m ≥ 2.

c© Chee-Keng Yap Basic Version June 13, 2008

§7. Transitive Closure Lecture XIV Page 19

If m = 0 or 1, C(w) := 1 (the identity for ⊗). For each k = 0, . . . , n, we will be interested in

sequences in w ∈ i[1..k]∗j, which may be identified with k-paths. We define the matrix C [k] = [C
[k]
ij]

where
C

[k]
ij =

⊕

w∈i[k]∗j

C(w).

Lemma 7.
(i) C [0] = C and for k = 1, . . . , n,

C
[k]
ij = C

[k−1]
ij ⊕

(
C

[k−1]
ik ⊗ (C

[k−1]
kk)∗ ⊗ C

[k−1]
kj

)
(9)

(ii) C [n] = C∗.

Proof. We only verify equation (9), using properties of countable sums:

C
[k]
ij =




⊕

w∈i[1..k−1]∗j

C(w)



 ⊕




⊕

w∈i[1..k−1]∗k[1..k]∗j

C(w)





= C
[k−1]
ij ⊕








⊕

w′∈i[1..k−1]∗k

C(w′)



⊗




⊕

w′′∈k[1..k]∗j

C(w′′)









= C
[k−1]
ij ⊕



C
[k−1]
ik ⊗




⊕

w′∈k[1..k]∗k

C(w′)



⊗




⊕

w′′∈k[1..k−1]∗j

C(w′′)









= C
[k−1]
ij ⊕



C
[k−1]
ik ⊗




⊕

w∈k[1..k]∗k

C(w)



 ⊗ C
[k−1]
kj



 .

It remains to determine the element x =
⊕

w∈k[1..k]∗k C(w). It follows from countable commuta-
tivity that

x = 1⊕ C
[k−1]
kk ⊕ (C

[k−1]
kk)2 ⊕ (C

[k−1]
kk)3 ⊕ · · · = (C

[k−1]
kk)∗,

as desired. Q.E.D.

In practice, we can actually do better than (9). Suppose we do not keep distinct copies of the
C [k] matrix for each k, but have only one C matrix. Then we can use the update rule

Cij = Cij ⊕ (Cik ⊗ (Ckk)∗ ⊗ Ckj) . (10)

It may be verified that this leads to the same result. However, we may be able to terminate earlier.

We use the analogue of equation (9) in line (A) of the Floyd-Warshall algorithm. The algorithm
uses O(n3) operations of the underlying closed semiring operations.

Boolean transitive closure. We are interested in computing transitive closure in the matrix
semiring Mn(B2), where B2 = {0, 1} is the closed Boolean semiring. Let TC2(n) denote the bit
complexity of computing the transitive closure in Mn(B2). Here “complexity” refers to the number
of operations in the underlying semiring B2. The Floyd-Warshall algorithm shows that

TC2(n) = O(n3).

c© Chee-Keng Yap Basic Version June 13, 2008

§7. Transitive Closure Lecture XIV Page 20

We now improve this bound by exploiting the bound

MM2(n) = O(MM(n) log n) = o(n3)

(see equation (7)). We may assume that MM2(n) = Ω(n2) and TC2(n) = Ω(n2). This assumption
can be verified in any reasonable model of computation, but we will not do this because it would
involve us in an expensive detour with little insights for the general results. This assumption also
implies that MM2(n) is an upper bound on addition of matrices, which is O(n2). Our main result
will be:

Theorem 8. TC2(n) = Θ(MM2(n)).

In our proof, we will interpret a matrix A ∈ Mn(B2) as the adjacency matrix of a digraph on
n vertices. So the transitive closure A∗ represents the reachability matrix of this graph:

(A∗)ij = 1 iff vertex j is reachable from i.

We may assume n is a power of 2. To show that TC2(n) = O(MM2(n)), we simply note that if
A, B ∈Mn(B2) then the reachability interpretation shows that if

C =




0 A 0
0 0 B
0 0 0





then

C∗ = I + C + C2 =




I A AB
0 I B
0 0 I



 .

Thus, we can reduce computing the product AB to computing the transitive closure of C ∈
M3n(B2):

MM(n) = O(TC2(3n)) + O(n2) = O(TC2(n)).

Now we show the converse. Assuming that A, B, C, D ∈Mn(B2), we claim that

(
A B
C D

)∗

=

(
E∗ E∗BD∗

D∗CE∗ D∗ + D∗CE∗BD∗

)
, (11)

where
E := A + BD∗C.

This formidable-looking expression (11) has a relatively simple combinatorial explanation using
the reachability interpretation. Assume the matrix of interest has dimensions 2n× 2n and it has
been partitioned evenly into A, B, C, D. If the vertices of the corresponding graph G is [1..2n] then
A represents the subgraph induced by [1..n], D the subgraph induced by [n+1..2n], B the bipartite
graph comprising edges from vertices in [1..n] to those in [n+1..2n], and C is similarly interpreted.
Now E represents the reachability relation on [1..n] determined by paths of G that makes at most
one detour outside [1..n]. It is then clear that E∗ represents the reachability relation of G, restricted
to those vertices in [1..n]. This justifies the top-left submatrix in the RHS of equation (11). We
leave it to the reader to similarly justify the other three submatrices on the RHS.

c© Chee-Keng Yap Basic Version June 13, 2008

§8. All-pairs Minimum Cost: Sparse Case Lecture XIV Page 21

Thus, the RHS is obtained by computing, in this order:

D∗ (costing TC2(n)),
E (costing O(MM2(n))),
E∗ (costing TC2(n)),

and finally, the remaining three submatrices on the RHS of equation (11). The total cost of this
procedure is

TC2(2n) = 2TC2(n) + O(MM2(n))

which has solution TC2(2n) = O(MM2(n)). This shows TC2(n) = O(MM2(n)), as desired.

Exercises

Exercise 7.1: Rewrite update rule (9) that corresponds to the improved rule (10). In other words,

show when the update of C
[k]
ij is sometimes using an “advance value” on the right-hand side.

♦

Exercise 7.2: Give similar interpretations for the other three entries of the RHS of equation (11).
♦

Exercise 7.3: Express the RHS of equation (11) as a product of three matrices
(

I 0
D∗C I

) (
E∗ 0
0 D∗

) (
I BD∗

0 I

)
,

and give an interpretation of the three matrices as a decomposition of paths in the underlying
graph. ♦

End Exercises

§8. All-pairs Minimum Cost: Sparse Case

Donald Johnson gave an interesting all-pairs minimum cost algorithm that runs in O(n2 log n+
mn) time. This improves on Floyd-Warshall when the graph is sparse (say m = o(n2)). Assume
that there are no negative cycles in our digraph G = (V, E; C). The idea is to introduce a potential
function

φ : V → R

and to modify the cost function to

Ĉ(i, j) = C(i, j) + φ(i)− φ(j). (12)

We want the modified cost function Ĉ to be non-negative so that Dijkstra’s algorithm is applicable
on the modified graph Ĝ = (V, E; Ĉ).

But how are minimum paths in Ĝ and in G related? Notice that if p, p′ are two paths from a
common start to a common final vertex then

Ĉ(p′)− Ĉ(p) = C(p′)− C(p).

This proves:

c© Chee-Keng Yap Basic Version June 13, 2008

§9. All-pairs Minimum Link Paths in Bigraphs Lecture XIV Page 22

Lemma 9. A path is a minimum cost path in Ĝ iff it is minimum cost path in G.

Suppose s is a vertex that can reach all the other vertices of the graph. In this case, we can
define the potential function to be

φ(v) := δ(s, v).

Note that φ(v) 6= −∞ since we stipulated that G has no negative cycle. Also φ(v) 6= ∞ since s
can reach v. The following inequality is easy to see:

φ(j) ≤ φ(i) + C(i, j)

Thus we have:

Lemma 10. Assuming there are no negative cycles, and s ∈ V can reach all other vertices, the
above modified cost function Ĉ is non-negative,

Ĉ(i, j) ≥ 0.

In particular, there are no negative cycles in Ĝ. To use the suggested potential function, we
need a vertex that can reach all other vertices. This is achieved by introducing an artificial vertex
s 6∈ V and using the graph G′ = (V ∪ {s}, E′; C′) where E′ = E ∪ {(s, v) : v ∈ V } and for all
i, j ∈ V , let C′(i, j) = C(i, j), C′(s, j) = 0 and C′(i, s) = ∞. Call G′ the augmentation of G
with s. Note that G′ has no negative cycle iff G has no negative cycle; furthermore, for a path p
between two vertices in V , p is a minimum path in G iff it is a minimum path in G′. This justifies
the following algorithm.

Johnson’s Algorithm:

Input: Graph (V, E; C) with general cost, no negative cycle.
Output: All pairs minimum cost matrix.
INITIALIZATION

Let (V ′, E′; C′) be the augmentation of (V, E; C) by s 6∈ V .
Invoke Bellman-Ford on (V ′, E′; C′, s) to compute δs.
Abort if negative cycle discovered; else, for all u, v ∈ V ,

let Ĉ(u, v)← C(u, v) + δ(s, u)− δ(s, v)
MAIN LOOP

For each v ∈ V , invoke Dijkstra’s algorithm on (V, E; Ĉ, v)
to compute δv.

The complexity of initialization is O(mn) and each invocation of Dijkstra in the main loop is
O(n log n + m). Hence the overall complexity is O(n2 log n + mn).

§9. All-pairs Minimum Link Paths in Bigraphs

We consider all-pairs minimum paths in bigraphs with unit costs. Hence we are interested in
minimum length paths. Let G be a bigraph on vertices [1..n] and A be its adjacency matrix. For
our purposes, we will assume that the diagonal entries of A are 1. Let dij denote the minimum
length of a path between i and j. Our goal is to compute the matrix D = [dij]

n
i,j=1. We describe

a recent result of Seidel [2] showing how to reduce this to integer matrix multiplication. For
simplicity, we may assume that G is a connected graph so dij <∞.

c© Chee-Keng Yap Basic Version June 13, 2008

§9. All-pairs Minimum Link Paths in Bigraphs Lecture XIV Page 23

In order to carry out the reduction, we must first consider the “square of G”. This is the graph
G′ on [1..n] such that (i, j) is an edge of G′ iff there is a path of length at most 2 in G between
i and j. Let A′ be the corresponding adjacency matrix and d′ij denote the minimum length of a

path in G′ between i and j. Note that A′ = A2, where the matrix product is defined over the
underlying Boolean semiring.

The following lemma relates dij and d′ij . But first, note the following simple consequence of
the triangular inequality for bigraphs:

dik − djk ≤ dij ≤ dik + djk, ∀i, j, k.

Moreover, for all i, j, ℓ, there exists k such that

ℓ ≤ dij =⇒ ℓ = dik = dij − djk. (13)

In our proof below, we will choose ℓ = dij − 1 and so k is adjacent to j.

Lemma 11.
0) d′ij =

⌈
dij

2

⌉
.

1) dij =even implies d′ik ≥ d′ij for all k adjacent to j.
2) dij =odd implies d′ik ≤ d′ij for all k adjacent to j. Moreover, there is a k adjacent to j such
that d′ik < d′ij .

Proof. 0) We have 2d′ij ≥ dij because given any path in G′ of length d′ij , there is one in G
between the same end points of length at most 2d′ij . We have 2d′ij ≤ dij + 1 because given any
path in G of length dij , there is one in G′ of length at most (dij + 1)/2 between the same end
points. This shows

dij ≤ 2d′ij ≤ dij + 1,

from which the desired result follows.
1) If k is adjacent to j then dik ≥ dij − djk = dij − 1. Hence

d′ik ≥

⌈
dij − 1

2

⌉
=

⌈
dij

2

⌉
= d′ij .

2) If k is adjacent to j then dik ≤ dij + 1 and hence

d′ik ≤

⌈
dij + 1

2

⌉
=

⌈
dij

2

⌉
= d′ij .

Moreover, by equation (13), there is a k adjacent to j such that dik = dij − 1. Then

d′ik =

⌈
dij − 1

2

⌉
=

⌈
dij

2

⌉
− 1 = d′ij − 1.

Q.E.D.

As a corollary of 1) and 2) above:

Corollary 12. For all i, j, the inequality

∑

k:dkj=1

d′ik ≥ deg(j) · d′ij

holds if and only if dij is even.

c© Chee-Keng Yap Basic Version June 13, 2008

§9. All-pairs Minimum Link Paths in Bigraphs Lecture XIV Page 24

Notice that
∑

k:dkj=1 d′ik is equal to the (i, j)th entry in the matrix T = D′ ·A. So to determine

the parity of dij we simply compare Tij to deg(j) · d′ij .

We now have a simple algorithm to compute D = [dij]. The diameter diam(G) is the maxi-
mum value in the matrix D. Let E be the matrix of all 1’s. Clearly diam(G) = 1 iff D = E. Note
that the diameter of G′ is ⌈r/2⌉.

Seidel Algorithm

Input: A, the adjacency matrix of G.
Output: The matrix D = [dij].
1) Compute A′ ← A2, the adjacency matrix of G′.
2) If A′ = E then the diameter of G is ≤ 2,

and return D ← 2A′ −A− I where I is the identity matrix.
3) Recursively compute the matrix D′ = [d′ij] for A′.
4) Compute the matrix product [tij]← D′ ·A.
5) Return D = [dij] where

dij ←

{
2d′ij if tij ≥ deg(j)d′ij
2d′ij − 1 else.

Correctness. The correctness of the output when A′ has diameter 1 is easily verified. The
inductive case has already been justified in the preceding development. In particular, step 5
implements the test for the parity of dij given by corollary 12. Each recursive call reduces the
diameter of the graph by a factor of 2 and so the depth of recursion is at most lg n. Since the work
done at each level of the recursion is O(MM(n)), we obtain an overall complexity of

O(MM(n) log n).

We remark that, unlike the other minimum cost algorithms, it is no simple matter to modify the
above algorithm to obtain the minimum length paths. In fact, it is impossible to output these
paths explicitly in subcubic time since this could have Ω(n3) output size. But we could encode
these paths as a matrix N where Nij = k if some shortest path from i to j begins with the edge
(i, k). Seidel gave an O(MM(n) log2 n) expected time algorithm to compute N .

Exercises

Exercise 9.1: We consider the same problem but for digraphs:
(a) Show that if we have a digraph with unit cost then the following is true for all i 6= j: dij

is even if and only if d′ik ≥ d′ij holds for all k such that dkj = 1.
(b) Use this fact to give an algorithm using O(MM(n) log n) arithmetic (+,−×) operations on

integers. HINT: replace D′ = [d′ij] by E = [eij] where eij = nn−d′

ij . ♦

End Exercises

References

[1] D. Kozen. On Kleene algebras and closed semirings. In Proc. Math. Foundations of Computer
Sci., pages 26–47. Springer-Verlag, 1990. Lecture Notes in C.S., No.452.

c© Chee-Keng Yap Basic Version June 13, 2008

§9. All-pairs Minimum Link Paths in Bigraphs Lecture XIV Page 25

[2] R. Seidel. On the all-pairs-shortest-path problem. ACM Symp. on Theory of Computing,
24:745–749, 1992.

c© Chee-Keng Yap Basic Version June 13, 2008

