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We developed a method forWe developed a method for
Simultaneous face detection and pose estimation.
Robust to: yaw (from left to right profile), roll (-45, 45), and pitch (-60, 60).

Single Detector is applied to all poses.
Pose estimation: Within 15°  error about 90% of poses are estimated correctly.
Near real-time: 5 frames per second on standard hardware..

Integrating face detection and pose estimation
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SynergySynergy  Common Problems:

Inner class variation 
(skin color, hair style, 
etc.)
Lighting Variations
Scale  Variations
Facial Expressions
…

Previous MethodsPrevious Methods
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Rough pose estimation

Pose specific face detector

Unmanageable in real problems
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Single pose parameterSingle pose parameter
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Yaw and roll             : 
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More Pose ParametersMore Pose Parameters

Learning Machine

Minimum Energy MachineMinimum Energy Machine  
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measures compatibility between X,Z,Y. 
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Operating the MachineOperating the Machine

Clamp X to  the observed value (the image)

 Find Z and Y such that:

 Complete energy:

Y , Z = argmin
Y ∈{Y },Z∈{Z }
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ArchitectureArchitecture  
Operating the machine:
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Convolutions Subsampling
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Convolutional Network:

“end-to-end” trainable systems from low-level 
features to high-level representations.

Easily learn the type of shift-invariant features, 
relevant to object recognition.

Can be replicated over large images much more 
efficiently than traditional classifiers. 
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training faces training non-faces

loss for face sample with 
known pose 

loss for non-face 
sample 

We showed that this loss function causes the machine to 
exhibit proper behavior: E Y desired , . . . E Y undesired , . . . margin
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Works on grey-level images.

Applied at range of scales stepping by a factor of      
           

The network is replicated over the image at each 
scale, stepping by 4 pixels in x and y.

Overlapping detections are replaced by the 
strongest.

Running the MachineRunning the Machine

TrainingTraining  
Results

“52,850,  32x32 grey-level images of faces (NEC Labs hand annotated set) with uniform distribution of poses.

Initial negative set: 52,850 random non-face natural images.

Second phase: half of the initial negative set was replaced by false positives of the initial version of the detector.

Each training image was used 5 times with random variation in scale, in-plane rotation, brightness and contrast.

9 passes on the data: 26 hours on 2Ghz Pentium 4.

The system converged to an EER of 5% on training set and 6% on test set of 90,000 images.

No standard set tests all poses, that our system is designed to detect.

3 standard sets focusing on particular pose variation: tilted, profile, and frontal.

Test on Standard Data SetsTest on Standard Data Sets
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Note: typical pose estimation systems input 
centered faces; when we hand localize this 
faces we get: 89% of yaw and 100% of in-
plane rotations within 15 degrees.

Detection:

Pose Estimation:

Synergy TestSynergy Test
Detection: Pose Estimation:
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