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Outline

@ What is behind Support Vector Machines?
+Constrained optimization
~|Lagrange constraints
=“Dual” solution
@ Support Vector Machines in detalil
-~ Kernel trick
= LibSVM demo



Binary Classification Problem

@ Given: Training data generated according to the distribution D

(x\,y\))"')(xm’ym>€SRnX{_191}
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space

@ Problem: Find a classifier (a function) #(x).R"—{—1,1]
such that it generalizes well on the test set obtained from the
same distribution D

@ Solution:
= Linear Approach: linear classifiers
(e.g. logistic regression, Perceptron)
=Non Linear Approach: non-linear classifiers
(e.g. Neural Networks, SVM)



Linearly Separable Data

@ Assume that the training data is linearly separable
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Linearly Separable Data

@ Assume that the training data is linearly separable

abscissa on axis parallel to W

abscissa of origin 0 is b

@ Then the classifieris: h(x) = w.X+b  where weR",beR

@ Inference: sign|h(x)/€{—1,1}



Linearly Separable Data

@ Assume that the training data is linearly separable

@ Maximize margin p (or 2p) so that:
For the closest points: A(x) = w.X+b € {—1,1|



Optimization Problem

@ A Constrained Optimization Problem

min
w 2
S.1..
yi<w'xi+b) = 1, i=\,...,m
label
: L _ 1
@ Equivalent to maximizing the margin p = m

@ A convex optimization problem:
@ Objective is convex

@ Constraints are affine hence convex

@ Therefore, admits an unique optimum at w,



@ Compare:

@ With:

Optimization Problem

min— ||w||2 objective
w 2

S.t.:
yi(w°x,'+b) = 1, i=1,...,m

constraints

( (w.x,+b) ) 22l||w||2

energy/errors

min

m

i=1

regularization
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Optimization: Some Theory

@ The problem:

minf(x) =

X

S.1..
fi(x)<09 l
h(x)=0, i

l,.
l,.

)

@ Solution of problem:  x°

objective function

..,m —+— inequality constraints

.., p =+— equality constraints

= Global (unique) optimum — if the problem is convex

= Local optimum — if the problem is not convex
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Optimization: Some Theory

@ Example: Standard Linear Program (LP)

. T
min cC X
X

s.t.:

@ Example: Least Squares Solution of Linear Equations
(with L, norm regularization of the solution x)

l.e. Ridge Regression
. T
min X X
X

S.l..
Ax=b
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Big Picture

@ Constrained / unconstrained optimization
@ Hierarchy of objective function:
smooth = infinitely derivable

convex = has a global optimum
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non-smooth
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Introducing the concept of
Lagrange function on a toy example



Toy Example:
Equality Constraint

@ Example 1: min X+ x, =

s.tr o x, +x,—2=0 =h, of

0x

Ay Vf: 1

‘\Yh 2 Vhl /Vf g_f
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el
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@ At Optimal Solution: V f(x")=ATV h, (x°)
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Toy Example:
Equality Constraint

@ x is not an optimal solution, if there exists  s#0
such that
h(x+s)=0

fx+s) < flx)

@ Using first order Taylor's expansion

Ies) = ke ¥ V iy (x)'s = Vi (x)'s =0 (1)

f(x+s)—f(x)=Vf(x)'s<0 (2)
@ Such ans can exist only when \ P
Vh(x)~| -~
Vi, (x) andV f(x) are not IC2ANP _

parallel V/ix) g




Toy Example:
Equality Constraint

@ Thus we have

V f(xX)=ATV by (x7)

_ Lagrange multiplier or
¥
The Lagrangian dual variable for #,

L(x, Al)=f<x)_A1/hl<x)

@ Thus at the solution

VL A0)=V f(xX°) =21V iy (x7) = 0

@ This is just a necessary (not a sufficient) condition”
x solution implies Vhl(X) |V f(x)
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Toy Example:
Inequality Constraint

@ Example 2: min  x,+Xx, =f
st 2—x.—x,20 =c, 0 f
o0x,

of
0x,

dc,

0x
Ve,=|0N
o dc,

0Xx,
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Toy Example:
Inequality Constraint

@ x is not an optimal solution, if there exists s#0

such that
c(x+s) =0

fx+s) < f(x)

@ Using first order Taylor's expansion

c,(x+s)=c,(x)+Ve,(x)'s =0 (1)

flx+s)=f(x) =V f(x)'s <0 (2)
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Toy Example:
Inequality Constraint

@ Case 1: Inactive constraint c,(x) >0
= Any sufficiently small s

aslongas V f (x)#0

*Thus ¢ = oV f(x)  where a>0

@ Case 2: Active constraint c,(x) =0

Ve, (x)'s=0 (1)
Vix)'s<0 (2)

In that case, s = 0 when:

V7iix)=aVel(x), where A, =0 Nt .




Toy Example:
Inequality Constraint

@ Thus we have the Lagrange function (as before)

L(x,A)=f(x)—A,c,(x)

Lagrange multiplier or
dual variable for c,

@ The optimality conditions

V. L(x°,A))=V f(x")=A'Vc,(x°) =+ forsome A,=0

and

0 o\ _ Complementarity
Aiei(x”) = 0 <*— ondition

either ¢ (x°) =0 or A7 =0

(active) (inactive) .



Same Concepts in a More General
Setting



Lagrange Function

@ The Problem

min fo(x) objective function
S.1..
f.(x)<0, i= m inequality constraints

L,...
=1,...,p p equality constraints

@ Standard tool for constrained optimization:
the Lagrange Function

L(x,A,v) -I—ZAf Z h(x)
RS

Vo

dual variables or Lagrange multipliers 23




Lagrange Dual Function

@ Defined, for A, v as the minimum value
of the Lagrange function over x

m inequality constraints

. m p
p equality constraints g R XR >R

x€D x€D

g, v)=inf L(x,A,v)=inf fo(x)+; Alfl-(X)Jr; vih;(x)
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Lagrange Dual Function

@ Interpretation of Lagrange dual function:
~ Writing the original problem as unconstrained problem
but with hard indicators (penalties)

m p
minimize | fo(x)+ 2, Io(f:(x))+ 2 1, (hy(x))
X i=) i=1
where satisfied satisfied
0 u<0 O U="
o u>0 0 UF

\ unsatisfied unsatisfied

indicator functions s



Lagrange Dual Function

@ |nterpretation of Lagrange dual function:
- The Lagrange multipliers in Lagrange dual function can be
seen as “softer” version of indicator (penalty) functions.

m P

Folx)+ 2 Lo(f(x)+ 2. 1, (y(x))

i=1 i=1

minimize

X

inf

xeD

fo<x>+gml Aifi('x)_l_é v;h(x)
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Sufficient Condition

e If (x°,A%,v?) is asaddle point, i.e. if

VxeR" VAa=0, L(x" A, v)SL(x’, A%, v')<L(x,A%, v’

@ ...then (x°, A%, v°) is a solution of the primal problem p°
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Lagrange Dual Problem

@ Lagrange dual function gives a lower bound
on the optimal value of the problem.
@ We seek the “best” lower bound to minimize the objective:

maximize g(A, V)
s.t.: A=0

@ The dual optimal value and solution:
d’ = g(A”,v’)

@ The Lagrange dual problem is convex
even if the original problem is not.
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Prirnal / Dual Problems

@ Primal problem:

min f(x)
xeD
0 S.t..
P fi(x)<0, i=
h(x)=0, i=
@ Dual problem:
max g(A,v)
dO A,V
s.t.: A=0

g(A:V)=iZ]; f0<x>+; Alfi('x)_l_; v;h;(x)
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Optimality Conditions:
First Order

@ Karush-Kuhn-Tucker (KKT) conditions
If the strong duality holds, then at optimality:

Vfo(x0)+i2\fo, +Zv Vh(x)=

@ KKT conditions are
> necessary in general (local optimum)
» necessary and sufficient in case of convex problems

(global optimum)



