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Outline of the Talk

@ Quick Tutorial on Optimization
~Basic idea behind Support Vector Machines
~Optimization concepts and terminology

@ Support Vector Machines in Detail

~Given by Fu Jie Huang



Binary Classification Problem

@ Given: Training data generated according to the
distribution D

(X, y), 0 (x,,y JERX{—1,1]

@ Problem: Find a classifier (a function) 4(x):R"—{—1,1|
such that it generalizes well on the test set obtained
from the same distributionD

@ Solution:
~Linear Approach: linear classifiers - perceptron and
many other.
~Non Linear Approach: non-linear classifiers - neural
nets and many other.



Linearly Separable Data

@ Assume that the training data is linearly separable



Linearly Separable Data

@ Assume that the training data is linearly separable

a.x+b where acR", beR

@ Then the classifier is: i (x

)
@ Inference: sign(h(x)) € {—1,1}



Linearly Separable Data

@ Assume that the training data is linearly separable

@ For the Closest Points: h(x) = a.X+b € —1,1
|

@ Margin: m = —
la]



Optimization Problem

@ [ts a Constrained Optimization Problem
1

min —||a|]

. 2

S.t.:

y.(X.a+b) =1, i=1,...,p

@ A convex optimization problem

@ Constraints are affine hence convex



Optimization: Some Theory

@ The problem:

min f,(x) < objective function
s.t.:

f(x)<0, i=1,...,m = inequality constraints
hl.(x)ZO , i=1,...,p -+— equality constraints

@ Solution of problem: x°
~ Global Optimum - if the problem is convex

-~ Local Optimum - if the problem is not convex



Optimization: Some Theory

@ Example: Standard Linear Program (LP)

. T
min ¢ X
X

S.1.:



The Big Picture

@ Constrained / Unconstrained Optimization

@ Hierarchy of object function

fo

/\

Convex Non Convex

Smooth Non-Smooth Smooth Non-Smooth



The Big Picture

@ Constrained / Unconstrained Optimization

@ Hierarchy of object function

fo
Conve)/ \Non Convex
Smooth Non-Smooth Smooth Non-Smooth

f

SVMs fall in this category



A Toy Example:
Equality Constraint

@ Example 1:  min  x,+x,
s.t.: x12+x22—2=O =h,

A
Xo

V h, ’Vf

@ At Optimal Solution: |V f(x”)=AV k,(x°)




A Toy Example:
Equality Constraint

@ x is not an optimal solution, if there exists an s#0

such that
h(x+s)=0

flx+s) < flx)

@ Using first order Taylor's expansion

flxts)=f(x) =V f(x)'s <0

h(x+s)=h(x)+Vh(x)'s=Vh(x)s=0 (1)

@ Such an s can exist only
when Vi, (x) and V f(x)

v hl (.X) \\' “///‘

are not parallel




A Toy Example:
Equality Constraint

@ Thus we have

V f(x)=A1V hy(x)

@ The Lagranaian Lagrange multiplier
© Lagtanglia or dual variable for #,

L(x,A,)=f (x)=Xih, (x)

@ Thus at the solution

V. L(x°,A0)=V f(x°)=A7V h,(x°) =0

@ This is just a necessary condition and not a sufficient
condition.



A Toy Example:
Inequality Constraint

@ Example 1:  min  x,+x,

2 2 _
s.t.: 2—x, —x, =20 =c,




A Toy Example:
Inequality Constraint

@ x is not an optimal solution, if there exists an

such that
c,(x+s)=0

flx+s) < f(x)

@ Using first order Taylor's expansion

c(x+s)=c,(x)+Ve,(x)'s =0 (1)

flx+s)=f(x) =V f(x)'s<0 (2)




A Toy Example:
Inequality Constraint

@ Case 1: Inactive Constraint c¢,(x) > 0
-~ Any sufficiently small s would do as long as

Vix)#0

- Thus

s=—aV f(x) where x>0

@ Case 2: Active Constraint ¢,(x) = 0

Ve (x)'s=0 (1)
Vix)s<0 (2)

Vfx)= 7\1V01(x), where A, =0 ‘,/




A Toy Example:
Inequality Constraint

@ Thus we have the Lagrangian (as before)

L(x,A)=f(x)—2¢ (x)

Lagrange multiplier
or dual variable for c,

@ The optimality conditions

V.L(x°,A))=V f(x")=A7Vc,(x°) =0  forsome A,=0

and

Complementarity

0 o\ __ ‘
Alcl(x ) =0 condition




Same Concepts in a More
General Setting



The Lagrangian

@ The Problem
min f(x)

X

S.l.:
fi(x)<0, i=1,...,m
h(x)=0, i=1,...,p

l

@ The Lagrangian associated with the problem

L(x,A,v) —I—ZAf )—I—Zp: v.h (x)

|

dual variables or Lagrangian multipliers




The Lagrange Dual Function

@ Defined as the minimum value of the Lagrangian over x

2 R"XR" >R

g(A,v)=inf L(x,A,V) mf folx +ZAf —|—ivihi(x)




The Lagrange Dual Function

@ Interpretation of Lagrange dual function:
-~ Writing the original problem as unconstrained

problem

m p
minimize | fo(x)+ 2 1o(f;(x))+ 2 T,(h,(x))

X i=1 i=1

where

0 u<0 0O u=0

Vi = I =
o= 0 s ()= 0

indicator functions



The Lagrange Dual Function

@ Interpretation of Lagrange dual function:
-~ The Lagrange multipliers in Lagrange dual function
can be seen as “softer” version of indicator (penalty)

function.
minimize | o)+ 1,(£,(x)+ 3 1, (h,(x)
in]; fO(x>+ZAifi(x>+Zvihi('x)




The Lagrange Dual Function

@ Lagrange dual function gives a lower bound on optimal
value of the problem.

g(A,v)<p’

@ Proof: Let x be a feasible point and let A=0.

Then we have:
f(x) < i=1,...,m
hz()AC> —

0
0 i=1,...,p



The Lagrange Dual Function

@ Lagrange dual function gives a lower bound on optimal
value of the problem.

g(A,v)<p

@ Proof: Let x be a feasible point and let A>=0.
Then we have:

o




The Lagrange Dual Function

@ Lagrange dual function gives a lower bound on optimal
value of the problem.

g(A,v)<p

@ Proof: Let x be a feasible point and let A>=0.
Then we have:

o

fi(x)<0 i=1,...,m
h(x)=0 i=1,....p
@ Thus . <

0
L(x,A,v) = fo(fc)+22\ifi(5c)—l—i vih (%) < fo(X)




The Lagrange Dual Function

@ Lagrange dual function gives a lower bound on optimal
value of the problem.

g(A,v)<p

@ Proof: Let x be a feasible point and let A>=0.
Then we have:

o

fi(x)<0 i=1,...,m
h(x)=0 i=1,....p
@ Thus . <

0
L(x,A,v) = fo(fc)+22\ifi(5c)—l—i vih (%) < fo(X)

@ Hence

g(A,v) =infL(x,A,v) < L(x,A,v) < f,(x)

xeD




The Lagrange Dual Problem

@ Lagrange dual function gives a lower bound on optimal
value of the problem.
@ It is natural to seek the “best” lower bound.

maximize g(A,V)
s.t.: A=0

@ Dual feasibility:
(A,v): A=0, g(A,v) = —

@ The dual optimal value and solution:
dO — g(AO, VO)

@ The Lagrange dual problem is convex even if the
original problem is not.



Primal / Dual Problems

@ Primal problem:

min f(x)

s.t.: p°
fi(x)<0, i=1,..., m

h(x)=0, i=1,...,p

@ Dual problem:

max g(A, V) q°

A,V
s.t.: A=0



Weak Duality

@ Weak duality theorem:

d’° < p°

@ Optimal duality gap:

p’—d =0

@ This bound is sometimes used to get an estimate on the
optimal value of the original problem that is difficult to
solve.



Strong Duality

@ Strong Duality:

d0:p0

@ Strong duality does not hold in general.

@ Slater's Condition: If x € relint D, that it is strictly
feasible.

fx)<0 for i=1,...m
h(x)=0 for i=1,...p

l

@ Strong duality theorem: Strong duality holds if Slater's
condition holds.
@ It also implies that the dual optimal value is attained.

(A%, V) with g(A°,v’)=d° = p°




Optimality Conditions:
First Order

@ Complementary slackness: If strong duality holds, then
at optimality

Af(x)=0 i=1,...m

@ Proof: We have
folx) = g(A%v?)
m p

= inf| fo(x)+ DA% F.(x)+ D v h(x)

i=1 i=1

< fo(xo)—l-z Aiofi(xo)-l-z V; h;(x") <« less than 0

< folx)

@ The result follows




Optimality Conditions:
First Order

@ Karush-Kuhn-Tucker (KKT) Conditions: If the strong
duality holds, then at optimality

f(x°)<0, i=1,...,m
h(x’) =0, i=1,..,p
AP =0, i=1,...,m

A f(x%) =0, i=1,...,m

@ KKT conditions are necessary in general and necessary
and sufficient in case of convex problems.



