Maximum Margin Classifiers: Support Vector Machines

Machine Learning and Pattern Recognition: Lecture 14

Sumit Chopra

Outline of the Talk

- Quick Tutorial on Optimization
 - Basic idea behind Support Vector Machines
 - Optimization concepts and terminology
- Support Vector Machines in Detail
 - Given by Fu Jie Huang

Binary Classification Problem

• Given: Training data generated according to the distribution D

$$(x_1, y_1), \dots, (x_p, y_p) \in \Re^n \times \{-1, 1\}$$

• Problem: Find a classifier (a function) $h(x): \Re^n \to \{-1,1\}$ such that it generalizes well on the test set obtained from the same distribution D

Solution:

- Linear Approach: linear classifiers perceptron and many other.
- Non Linear Approach: non-linear classifiers neural nets and many other.

Linearly Separable Data

• Assume that the training data is linearly separable

Linearly Separable Data

• Assume that the training data is linearly separable

- Then the classifier is: $h(x) = \vec{a} \cdot \vec{x} + b$ where $a \in \mathbb{R}^n$, $b \in \mathbb{R}$
- Inference: $sign(h(x)) \in \{-1,1\}$

Linearly Separable Data

• Assume that the training data is linearly separable

- For the Closest Points: $h(x) = \vec{a} \cdot \vec{x} + b \in -1, 1$
- Margin: $m = \frac{1}{\|\vec{a}\|}$

Optimization Problem

Its a Constrained Optimization Problem

$$\min_{x} \frac{1}{2} ||\vec{a}||^{2}
s.t.:
y_{i}(\vec{x}_{i}.\vec{a}+b) \ge 1, \quad i=1,..., p$$

- A convex optimization problem
- Constraints are affine hence convex

Optimization: Some Theory

• The problem:

```
\begin{aligned} &\min_{x} f_0(x) & \longleftarrow & \text{objective function} \\ &s.t.: \\ &f_i(x) \leq 0, \quad i = 1, \dots, m & \longleftarrow & \text{inequality constraints} \\ &h_i(x) = 0, \quad i = 1, \dots, p & \longleftarrow & \text{equality constraints} \end{aligned}
```

- Solution of problem: x^o
 - Global Optimum if the problem is convex
 - Local Optimum if the problem is not convex

Optimization: Some Theory

Example: Standard Linear Program (LP)

$$min c^{T} x$$

$$s.t.:$$

$$Ax = b$$

$$x \ge 0$$

Example: Least Squares Solution of Linear Equations

$$min x^{T} x$$

$$s.t.:$$

$$Ax = b$$

The Big Picture

- Constrained / Unconstrained Optimization
- Hierarchy of object function

The Big Picture

- Constrained / Unconstrained Optimization
- Hierarchy of object function

A Toy Example: Equality Constraint

• Example 1: $min x_1 + x_2$ $s.t.: x_1^2 + x_2^2 - 2 = 0 \equiv h_1$

• At Optimal Solution:

$$\nabla f(x^{o}) = \lambda_{1}^{o} \nabla h_{1}(x^{o})$$

A Toy Example: Equality Constraint

• x is not an optimal solution, if there exists an $s \neq 0$ such that

$$h_1(x+s) = 0$$

$$f(x+s) < f(x)$$

Using first order Taylor's expansion

$$h_1(x+s) = h_1(x) + \nabla h_1(x)^T s = \nabla h_1(x)^T s = 0$$
 (1)

$$f(x+s)-f(x) = \nabla f(x)^T s < 0$$
 (2)

• Such an s can exist only when $\nabla h_1(x)$ and $\nabla f(x)$ are not parallel

A Toy Example: Equality Constraint

Thus we have

$$\nabla f(x^o) = \lambda_1^o \nabla h_1(x^o)$$

The Lagrangian

Lagrange multiplier or dual variable for h_1

$$L(x,\lambda_1) = f(x) - \lambda_1 h_1(x)$$

Thus at the solution

$$\nabla_{x} L(x^{o}, \lambda_{1}^{o}) = \nabla f(x^{o}) - \lambda_{1}^{o} \nabla h_{1}(x^{o}) = 0$$

• This is just a necessary condition and not a sufficient condition.

A Toy Example: Inequality Constraint

• Example 1: $min x_1 + x_2$ $s.t.: 2 - x_1^2 - x_2^2 \ge 0 \equiv c_1$

A Toy Example: Inequality Constraint

 \bullet x is not an optimal solution, if there exists an

such that

$$c_1(x+s) \ge 0$$

$$f(x+s) < f(x)$$

Using first order Taylor's expansion

$$c_1(x+s) = c_1(x) + \nabla c_1(x)^T s \ge 0$$
 (1)

$$f(x+s)-f(x) = \nabla f(x)^T s < 0 \qquad (2)$$

A Toy Example: Inequality Constraint

• Case 1: Inactive Constraint $c_1(x) > 0$

- Any sufficiently small s would do as long as

$$\nabla f_1(x) \neq 0$$

→ Thus

$$s = -\alpha \nabla f(x)$$
 where $\alpha > 0$

• Case 2: Active Constraint $c_1(x) = 0$

$$\nabla c_1(x)^T s \ge 0 \qquad (1)$$

$$\nabla f(x)^T s < 0 \qquad (2)$$

$$\nabla f(x) = \lambda_1 \nabla c_1(x), \quad \text{where } \lambda_1 \ge 0$$

 x_1

A Toy Example: Inequality Constraint

• Thus we have the Lagrangian (as before)

$$L(x,\lambda_1) = f(x) - \lambda_1 c_1(x)$$
La

Lagrange multiplier or dual variable for c_1

• The optimality conditions

$$\nabla_{\mathbf{x}} L(\mathbf{x}^{o}, \lambda_{1}^{o}) = \nabla f(\mathbf{x}^{o}) - \lambda_{1}^{o} \nabla c_{1}(\mathbf{x}^{o}) = 0 \quad \text{for some} \quad \lambda_{1} \ge 0$$

and

Same Concepts in a More General Setting

The Lagrangian

• The Problem

$$\min_{x} f_{0}(x)$$
 $s.t.:$
 $f_{i}(x) \leq 0, \quad i=1,...,m$
 $h_{i}(x) = 0, \quad i=1,...,p$

• The Lagrangian associated with the problem

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

dual variables or Lagrangian multipliers

• Defined as the minimum value of the Lagrangian over x $g: \Re^m \times \Re^p \to \Re$

$$g(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu) = \inf_{x \in D} \left| f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right|$$

- Interpretation of Lagrange dual function:
 - Writing the original problem as unconstrained problem

minimize
$$f_0(x) + \sum_{i=1}^m I_0(f_i(x)) + \sum_{i=1}^p I_1(h_i(x))$$

where

$$I_{0}(u) = \begin{cases} 0 & u \leq 0 \\ \infty & u > 0 \end{cases} \qquad I_{1}(u) = \begin{cases} 0 & u = 0 \\ \infty & u \neq 0 \end{cases}$$
 indicator functions

- Interpretation of Lagrange dual function:
 - → The Lagrange multipliers in Lagrange dual function can be seen as "softer" version of indicator (penalty) function.

minimize
$$\left| f_0(x) + \sum_{i=1}^m I_0(f_i(x)) + \sum_{i=1}^p I_1(h_i(x)) \right|$$

$$\inf_{x \in D} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

 Lagrange dual function gives a lower bound on optimal value of the problem.

$$g(\lambda, \nu) \leq p^o$$

• Proof: Let \hat{x} be a feasible point and let $\lambda \ge 0$. Then we have:

$$f_i(\hat{x}) \le 0$$
 $i=1,..., m$
 $h_i(\hat{x}) = 0$ $i=1,..., p$

 Lagrange dual function gives a lower bound on optimal value of the problem.

$$g(\lambda, \nu) \leq p^o$$

• Proof: Let \hat{x} be a feasible point and let $\lambda \ge 0$. Then we have:

$$f_i(\hat{x}) \le 0$$
 $i=1,..., m$
 $h_i(\hat{x}) = 0$ $i=1,..., p$

Thus

$$L(\hat{x}, \lambda, \nu) = f_0(\hat{x}) + \sum_{i=1}^{m} \lambda_i f_i(\hat{x}) + \sum_{i=1}^{p} \nu_i h_i(\hat{x}) \leq f_0(\hat{x})$$

 Lagrange dual function gives a lower bound on optimal value of the problem.

$$g(\lambda, \nu) \leq p^{o}$$

• Proof: Let \hat{x} be a feasible point and let $\lambda \ge 0$. Then we have:

$$f_i(\hat{x}) \leq 0 \qquad i=1,...,m$$

$$h_i(\hat{x}) = 0 \qquad i=1,...,p$$

Thus

$$L(\hat{x}, \lambda, \nu) = f_0(\hat{x}) + \sum_{i=1}^{m} \lambda_i f_i(\hat{x}) + \sum_{i=1}^{p} \nu_i h_i(\hat{x}) \le f_0(\hat{x})$$

 Lagrange dual function gives a lower bound on optimal value of the problem.

$$g(\lambda, \nu) \leq p^o$$

• Proof: Let \hat{x} be a feasible point and let $\lambda \ge 0$. Then we have:

$$f_i(\hat{x}) \leq 0 \qquad i=1,...,m$$

$$h_i(\hat{x}) = 0 \qquad i=1,...,p$$

$$\leq 0$$

Thus

$$L(\hat{x}, \lambda, \nu) = f_0(\hat{x}) + \sum_{i=1}^{m} \lambda_i f_i(\hat{x}) + \sum_{i=1}^{p} \nu_i h_i(\hat{x}) \le f_0(\hat{x})$$

Hence

$$g(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu) \le L(\hat{x}, \lambda, \nu) \le f_0(\hat{x})$$

The Lagrange Dual Problem

- Lagrange dual function gives a lower bound on optimal value of the problem.
- It is natural to seek the "best" lower bound.

maximize
$$g(\lambda, \nu)$$

s.t.: $\lambda \ge 0$

Dual feasibility:

$$(\lambda, \nu)$$
: $\lambda \geq 0$, $g(\lambda, \nu) \geq -\infty$

• The dual optimal value and solution:

$$d^{o} = g(\lambda^{o}, \nu^{o})$$

• The Lagrange dual problem is convex even if the original problem is not.

Primal / Dual Problems

Primal problem:

$$min f_0(x)$$
 $s.t.:$
 $f_i(x) \le 0, \quad i = 1,..., m$
 $h_i(x) = 0, \quad i = 1,..., p$

Dual problem:

$$\max_{\lambda,\nu} g(\lambda,\nu) \\ s.t.: \lambda \ge 0$$

Weak Duality

• Weak duality theorem:

$$d^o \leq p^o$$

Optimal duality gap:

$$p^{o}-d^{o}\geqslant 0$$

• This bound is sometimes used to get an estimate on the optimal value of the original problem that is difficult to solve.

Strong Duality

Strong Duality:

$$d^o = p^o$$

- Strong duality does not hold in general.
- Slater's Condition: If $x \in relint D$, that it is strictly feasible.

$$f_i(x) < 0$$
 for $i=1,...m$
 $h_i(x) = 0$ for $i=1,...p$

- Strong duality theorem: Strong duality holds if Slater's condition holds.
- It also implies that the dual optimal value is attained.

$$\exists (\lambda^o, \nu^o) \quad with \quad g(\lambda^o, \nu^o) = d^o = p^o$$

Optimality Conditions: First Order

Complementary slackness: If strong duality holds, then at optimality

$$\lambda_i^o f_i(x^o) = 0 \qquad i = 1, \dots m$$

Proof: We have

$$f_0(x^o) = g(\lambda^o, v^o)$$

$$= \inf_{x} \left\{ f_0(x) + \sum_{i=1}^m \lambda_i^o f_i(x) + \sum_{i=1}^p v_i^o h_i(x) \right\}$$

$$\leq f_0(x^o) + \sum_{i=1}^m \lambda_i^o f_i(x^o) + \sum_{i=1}^p v_i^o h_i(x^o) \quad \text{less than } 0$$

$$\leq f_0(x^o)$$

The result follows

Optimality Conditions: First Order

• Karush-Kuhn-Tucker (KKT) Conditions: If the strong duality holds, then at optimality

$$f_{i}(x^{o}) \leq 0, \quad i=1,...,m$$

$$h_{i}(x^{o}) = 0, \quad i=1,...,p$$

$$\lambda_{i}^{o} \geq 0, \quad i=1,...,m$$

$$\lambda_{i}^{o} f_{i}(x^{o}) = 0, \quad i=1,...,m$$

$$\nabla f_{0}(x^{o}) + \sum_{i=1}^{m} \lambda_{i}^{o} \nabla f_{i}(x^{o}) + \sum_{i=1}^{p} \nu_{i}^{o} \nabla h_{i}(x^{o}) = 0$$

 KKT conditions are necessary in general and necessary and sufficient in case of convex problems.