
MACHINE LEARNING AND

PATTERN RECOGNITION

Spring 2004, Lecture 4b

Modules and Architectures

Yann LeCun
The Courant Institute,
New York University
http://yann.lecun.com

Y. LeCun: Machine Learning and Pattern Recognition – p. 1/17



A Trainer class

MACHINE

COST

LOSS

ENERGY

MOUT

INPUT

P
A

R
A

M

OUTPUT

L

Simple Trainer

The trainer object is designed to train a particu-
lar machine with a given energy function and loss.
The example below uses the simple energy loss.
(defclass simple-trainer object

input ; the input state

output ; the output/label state

machin ; the machine

mout ; the output of the machine

cost ; the cost module

energy ; the energy (output of the cost) and loss

param ; the trainable parameter vector

)

Y. LeCun: Machine Learning and Pattern Recognition – p. 2/17



A Trainer class: running the machine

MACHINE

COST

LOSS

ENERGY

MOUT

INPUT

P
A

R
A

M

OUTPUT

L

Simple Trainer

Takes an input and a vector of possible labels (each
of which is a vector, hence <label-set> is a matrix)
and returns the index of the label that minimizes the
energy. Fills up the vector <energies> with the energy
produced by each possible label.
(defmethod simple-trainer run

(sample label-set energies)

(==> input resize (idx-dim sample 0))

(idx-copy sample :input:x)

(==> machine fprop input mout)

(idx-bloop ((label label-set) (e energies))

(==> output resize (idx-dim label 0))

(idx-copy label :output:x)

(==> cost fprop mout output energy)

(e (:energy:x)))

;; find index of lowest energy

(idx-d1indexmin energies))

Y. LeCun: Machine Learning and Pattern Recognition – p. 3/17



A Trainer class: training the machine

MACHINE

COST

LOSS

ENERGY

MOUT

INPUT

P
A

R
A

M

OUTPUT

L

Simple Trainer

Performs a learning update on one sample. <sample>
is the input sample, <label> is the desired category (an
integer), <label-set> is a matrix where the i-th row is
the desired output for the i-th category, and <update-
args> is a list of arguments for the parameter update
method (e.g. learning rate and weight decay).
(defmethod simple-trainer learn-sample

(sample label label-set update-args)

(==> input resize (idx-dim sample 0))

(idx-copy sample :input:x)

(==> machine fprop input mout)

(==> output resize (idx-dim label-set 1))

(idx-copy (select label-set 0 (label 0)) :output:x)

(==> cost fprop mout output energy)

(==> cost bprop mout output energy)

(==> machine bprop input mout)

(==> param update update-args)

(:energy:x))

Y. LeCun: Machine Learning and Pattern Recognition – p. 4/17



Other Topologies

The back-propagation procedure is not
limited to feed-forward cascades.

It can be applied to networks of module
with any topology, as long as the
connection graph is acyclic.

If the graph is acyclic (no loops) then, we
can easily find a suitable order in which to
call the fprop method of each module.

The bprop methods are called in the
reverse order.

if the graph has cycles (loops) we have a
so-called recurrent network. This will be
studied in a subsequent lecture.

Y. LeCun: Machine Learning and Pattern Recognition – p. 5/17



More Modules

A rich repertoire of learning machines can be constructed with just a few module types
in addition to the linear, sigmoid, and euclidean modules we have already seen.
We will review a few important modules:

The branch/plus module

The switch module

The Softmax module

The logsum module

Y. LeCun: Machine Learning and Pattern Recognition – p. 6/17



The Branch/Plus Module

The PLUS module: a module with K inputs
X1, . . . , XK (of any type) that computes the sum
of its inputs:

Xout =
∑

k

Xk

back-prop: ∂E
∂Xk

= ∂E
∂Xout

∀k

The BRANCH module: a module with one input
and K outputs X1, . . . , XK (of any type) that
simply copies its input on its outputs:

Xk = Xin ∀k ∈ [1..K]

back-prop: ∂E
∂in =

∑
k

∂E
∂Xk

Y. LeCun: Machine Learning and Pattern Recognition – p. 7/17



The Switch Module

A module with K inputs X1, . . . , XK (of
any type) and one additional
discrete-valued input Y .

The value of the discrete input determines
which of the N inputs is copied to the
output.

Xout =
∑

k

δ(Y − k)Xk

∂E

∂Xk

= δ(Y − k)
∂E

∂Xout

the gradient with respect to the output is
copied to the gradient with respect to the
switched-in input. The gradients of all other
inputs are zero.

Y. LeCun: Machine Learning and Pattern Recognition – p. 8/17



The Logsum Module

fprop:

Xout = −
1

β
log

∑

k

exp(−βXk)

bprop:
∂E

∂Xk

=
∂E

∂Xout

exp(−βXk)∑
j exp(−βXj)

or
∂E

∂Xk

=
∂E

∂Xout
Pk

with

Pk =
exp(−βXk)∑
j exp(−βXj)

Y. LeCun: Machine Learning and Pattern Recognition – p. 9/17



Log-Likelihood Loss function and Logsum Modules

MAP/MLE Loss Lll(W, Y i, Xi) = E(W, Y i, Xi) + 1
β

log
∑

k exp(−βE(W, k, X i))

A classifier trained with the
Log-Likelihood loss can be
transformed into an equivalent
machine trained with the energy
loss.

The transformed machine contains
multiple “replicas” of the classifier,
one replica for the desired output,
and K replicas for each possible
value of Y .

Y. LeCun: Machine Learning and Pattern Recognition – p. 10/17



Softmax Module

A single vector as input, and a “normalized” vector as output:

(Xout)i =
exp(−βxi)∑
k exp(−βxk)

Exercise: find the bprop
∂(Xout)i

∂xj

=???

Y. LeCun: Machine Learning and Pattern Recognition – p. 11/17



Radial Basis Function Network (RBF Net)

Linearly combined Gaussian
bumps.

F (X, W, U) =∑
i ui exp(−ki(X −Wi)

2)

The centers of the bumps can be
initialized with the K-means
algorithm (see below), and
subsequently adjusted with gradient
descent.

This is a good architecture for re-
gression and function approxima-
tion.

Y. LeCun: Machine Learning and Pattern Recognition – p. 12/17



NN-RBF Hybrids

sigmoid units are generally more
appropriate for low-level feature
extraction.

Euclidean/RBF units are generally more
appropriate for final classifications,
particularly if there are many classes.

Hybrid architecture for multiclass classifi-
cation: sigmoids below, RBFs on top + soft-
max + log loss.

Y. LeCun: Machine Learning and Pattern Recognition – p. 13/17



Parameter-Space Transforms

Reparameterizing the function by transforming the space

E(Y, X, W )→ E(Y, X, G(U))

gradient descent in U space:

U ← U − η ∂G
∂U

′ ∂E(Y,X,W )
∂W

′

equivalent to the following algorithm in W

space: W ←W − η ∂G
∂U

∂G
∂U

′ ∂E(Y,X,W )
∂W

′

dimensions: [Nw ×Nu][Nu ×Nw][Nw]

Y. LeCun: Machine Learning and Pattern Recognition – p. 14/17



Parameter-Space Transforms: Weight Sharing

A single parameter is replicated multiple
times in a machine

E(Y, X, w1, . . . , wi, . . . , wj , . . .)→

E(Y, X, w1, . . . , uk, . . . , uk, . . .)

gradient: ∂E()
∂uk

= ∂E()
∂wi

+ ∂E()
∂wj

wi and wj are tied, or equivalently, uk is
shared between two locations.

Y. LeCun: Machine Learning and Pattern Recognition – p. 15/17



Parameter Sharing between Replicas

We have seen this before: a parameter controls
several replicas of a machine.

E(Y1, Y2, X, W ) = E1(Y1, X, W )+E1(Y2, X, W )

gradient:
∂E(Y1,Y2,X,W )

∂W
= ∂E1(Y1,X,W )

∂W
+ ∂E1(Y2,X,W )

∂W

W is shared between two (or more) instances of
the machine: just sum up the gradient contribu-
tions from each instance.

Y. LeCun: Machine Learning and Pattern Recognition – p. 16/17



Path Summation (Path Integral)

One variable influences the output through several others

E(Y, X, W ) =
E(Y, F1(X, W ), F2(X, W ), F3(X, W ), V )

gradient: ∂E(Y,X,W )
∂X

=
∑

i
∂Ei(Y,Si,V )

∂Si

∂Fi(X,W )
∂X

gradient: ∂E(Y,X,W )
∂W

=
∑

i
∂Ei(Y,Si,V )

∂Si

∂Fi(X,W )
∂W

there is no need to implement these rules ex-
plicitely. They come out naturally of the object-
oriented implementation.

Y. LeCun: Machine Learning and Pattern Recognition – p. 17/17


	A Trainer class
	A Trainer class: running the machine
	A Trainer class: training the machine
	Other Topologies
	More Modules
	The Branch/Plus Module
	The Switch Module
	The Logsum Module
	Log-Likelihood Loss function and Logsum Modules
	Softmax Module
	Radial Basis Function Network (RBF Net)
	NN-RBF Hybrids
	Parameter-Space Transforms
	Parameter-Space Transforms: Weight Sharing
	Parameter Sharing between Replicas
	Path Summation (Path Integral)

