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Review of Probability and Statistics: Definitions

Random VariableX: a variable that represents a particular measurement/state of
the world.

The probability thatX has valuex (the result of a drawing, a sampling, or the
result of a measurement) is denotedP (x), or sometimesP (X = x).

The space of outcomesx, can be discrete, or continuous, possibly
multidimensional.

A discrete distribution associates a number0 ≤ P (x) ≤ 1 to each possible
outcomex, such that

∑
x P (x) = 1.

A probability Density Function (PDF) associates a positivenumberP (x) to
each point in the space of outcomes (can be larger than 1) suchthat∫

P (x)dx = 1.

The probability thatX belongs to a setS is equal to
Prob(X ∈ S) =

∫
x∈S

P (x)dx.
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Expectations

Expected value of a functionf of a random variableX (a.k.a. the "average
value"):

E(f) =
∑

x

f(x)P (x)

in the continuous case:

E(f) =

∫
f(x)P (x)dx

Example 1, the mean ofX: E(X) =
∑

x xP (x)

Example 2, the variance ofX:
V ar(X) = E [(X − E(X))2] =

∑
x(x− E(X))2P (x)

Example 3, the covariance of a multidimensional random variable (dimension
N ): Cov(X) = E(X.X ′) =

∑
x x.x′P (x) x.x′ is the outer product ofx by

itself: [x.x′]ij = xixj , a symmetricN ×N matrix.
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Joint Probability

Two random variablesX andY (e.g.X = percentage of alcohol in the blood of
a person today (continuous),Y = 1 if the person is in a car crash, 0 otherwise).

The joint probability is the function that maps an(x, y) pair to the probability
thatX = x andY = y for a person.

Dependency:Y is more likely to be 1 ifX is large, andX is more likely to be
large ifY is 1.

Marginal probabilities:

P (x) =
∑

y

P (x, y)

P (y) =

∫
P (x, y)dx
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Conditional Probability

Probability that someone was in a car crash knowing that the person was drunk
= of all the persons who were drunk, what proportion had a car crash:

P (y|x) = p(x, y)/p(x)

P (y|x) is read "Probability ofy givenx.

Normalization:
∑

y P (y|x) = 1
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Conditional Independence

Independence:X andY areindependentiff P (x, y) = P (x)P (y), in other words
P (x|y) = P (x) andP (y|x) = P (y).
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Special Distributions: Exponential Family

A very general family of parameterized distributions.

P (x|ω) = h(x) exp(ω′T (x)−A(ω)) = 1
Z(ω)h(x) exp(ω′T (x))

ω the “natural” parameter

Z(ω) = exp(A(ω)) is thepartition function

T (x) asufficient statistic: all you need to know aboutx to compute its
distribution with a linear combination.
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Special Distributions: Gaussian

For a continuous random variable:P (x|m, v) = 1√
2πv

exp(− 1
2v (x−m)2)

m is the mean,v is the variance.

exponential family with
w = [m/v,−1/2v]

T (x) = [x, x2]

Z(w) =
√

v exp(m/2v)

h(x) = 1/
√

2π
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Special Distributions: Multivariate Gaussian

For a continuous random variable (X, andM areN -dimensional vectors,V is
anN ×N matrix):
P (X|M, V ) = |2πV |−1/2 exp(−1/2(X −M)′V −1(X −M))

|2πV | is the determinant of2πV .

exponential family with

w = [V −1M,−1/2V −1]

T (x) = [X, XX ′]

Z(w) = |V |/2 exp(1/2M ′V −1M)

h(x) = (2π)−N/2

Important facts: marginals of Gaussians are Gaussians, products of Gaussians
are Gaussians, conditionals of Gaussians are Gaussians.

Y. LeCun: Machine Learning and Pattern Recognition – p. 9/23



Bayes’ Rules

From the definition of conditional probabilitiesP (x, y) = P (x|y)P (y).

ThereforeP (x, y) = P (x|y)P (y) = P (y|x)P (x).

Hence

P (x|y) =
P (y|x)P (x)

P (y)

Or equivalently:

P (x|y) =
P (y|x)P (x)∑
x′ P (y|x′)P (x′)

This is a convenient way of reversing conditional probabilities.
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More General Forms of Bayes’ Rules

Chain rule (any ordering works):

P (x, y, z) = P (x|y, z)P (y|z)P (z) = P (z|y, x)P (y|x)P (x) = ...

In general:P (x1...xn) =
∏

i P (xi|x1...xi−1) for any ordering1..n.

Conditional Bayes inversion:

P (x|y, z) =
P (y|x, z)P (x, z)

P (y, z)

Chain rule and maginalization in one fell swoop (feels like amatrix-vector or
matrix-matrix product):

P (y) =

∫
x

P (y|x)P (x)

P (y|z) =

∫
x

P (y|x)P (x|z)
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Probabilistic Models: Bayes Decision Theory

A common (but according to some, flawed) way of building a classifier is to estimate
the density function for each classP (X|C1) andP (X|C2). When a new input comes
in, compute theposterior probability of the class conditioned on the input using
Bayes rule:

P (C1|X) =
P (X|C1)P (C1)

P (X)

This can be rewritten as:

P (C1|X) =
P (X|C1)P (C1)∑

C P (X|C)P (C)

The same can be done for classC2. Then, pick the class that has the largest posterior
probability for the givenX.
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Minimum Bayes Error Rate

The area of the intersection between the two curves (assuming those curves are the real
ones, not just estimates) is theMinimum Bayes Error Rate . Inputs that fall into that
region are always classified wrong by the Bayes decision rule.
CAUTION: in practice weneverknow the “real” distributions, so we can never really
compute the Bayes error rate, except in datasets that we cookup artificially by
sampling from known distributions.
In real life there is no such thing as “the distribution from which the data is sampled”,
we are just given a finite number of samples, period.
Assuming that our samples are drawn independently from somedistribution is a
convenient (sometimes necessary) hypothesis, but we must keep in mind that it’s
wrong.
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Generative Classifiers, Flawed?

A common criticism of Bayesian classifiers and othergenerativemodels is that they
require us to solve a much more complicated problem than we have to. We are asked
to solve several density estimation problems over the wholespace just to come up with
a decision boundary.
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Discriminative Classifiers

Discriminative classifiers (such as the Perceptron) do not attempt to estimate the class
densities, but simply try to find an suitable boundary (or simpy try to estimate the class
posterior probabilities without going through the class densities).
This is a considerably easier problem than estimating densities over the whole space.
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Naive Bayes Classifier

The Naive Bayes classifiers is a very simple (but way suboptimal) linear
classifier. It assumes independence of the input variables.

Simple setting: two class classification problem

Probability thatX belong to classC1:

P (C1|X) = P (X|C1)P (C1)/P (X)

WhereP (X) is simplyP (X|C1)P (C1) + P (X|C2)P (C2).

Let’s assume that the input variablesxi are independent, we can factorize
P (X|C1) as a product

∏
i P (xi|C1):

P (C1|X) =

∏
i P (xi|C1)P (C1)

P (X)
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Naive Bayes Classifier

Estimating the termsP (xi|C1) = P (xi, C1)/P (C1) is simply performed by
counting of how many times thei-th input variable takes the valuexi when the
sample category isC1, and dividing by the number of samples of classC1.

To classify, we can drop the constant termP (X) (which does not change from
class to class). Taking logs we can write:

logP (C1|X) = logP (C1) +
∑

i

log[P (xi|C1)]

If the variablesxi are binary (1 or 0) we can write this as

logP (C1|X) = logP (C1)+
∑

i

(1−xi) log[P (xi = 0|C1)]+xi log[P (xi = 1|C1)]
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Naive Bayes Classifier

regrouping the terms:

logP (C1|X) = logP (C1) +
∑

i

log[P (xi = 0|C1)]+

∑
i

(log[P (xi = 1|C1)]− log[P (xi = 0|C1)])xi

This is just like a linear classifier of the formW0 + W ′X with funny weights
and biases. Naive Bayes classifiers rarely work well compared to discriminative
linear classifiers.
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Estimating Probabilities

Estimating probabilities cannot be performed without amodel, a set of
independence hypotheses, and a well defined set of measurements.

Since those choices are somewhat arbitrary, there is no suchthing as “The
Probability” of a real event, there are only estimates conditioned upon arbitrary
assumptions.

Example: I toss a fair coin, here is the result:
110111001110111101000000110100...

Now, predict the next toss.

Method 0 [charming na iveté]: you told me it was a fair coin, so0 and 1 are
equiprobable.

Method 1 [independent draws]: I assume that the draws are independent (the
next bit does not directly depend upon the previous bits). I Just compute the
empirical ratio of 1 and 0 and predict accordingly.
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Estimating Probabilities

110111001110111101000000110100...

Method 2 [extra measurements]: If I use my secret super-duper measurement
device, I can get a glimpse of the state of the universe withincubic kilometer
around you (including your brain). With that, I can predict which side the coin
will fall on with quasi-certainty (except for quantum interactions with the rest of
the universe). Each bit now depends on10100 known bits (and an even larger
number of unknown but largely irrelevant bit) through a horribly complicated
function.

Method 3 [internal structure/dependencies]: I know you cooked up this
example. Those bits would not have something to do with the decimals ofπ by
any chance?

Depending on your hypotheses and assumptions, your probability estimate may be
very different from mine.
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Probabilistic Linear Classification: Logistic Regression

We want to classify vectors into two classesC1 andC2.

We assume that the quantitylog P (C1|X,W )
P (C2|X,W ) is parameterized as a linear

combination of the inputs (W is the parameter vector):

log
P (C1|X, W )

P (C2|X, W )
= W ′X

since we only have two classes, we can writeP (C2|X, W ) = 1− P (C1|W, X)

hence
P (C1|X, W )

1− P (C1|X, W )
= exp(W ′X)

solving forP (C1|X, W ), we get:

P (C1|X, W ) = σ(−W ′X) =
1

1 + exp(−W ′X)

σ is called the logistic function.
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Estimating a Logistic Regression

How do we compute theW that best approximates the desired distribution of
P (C|X)?

We measure the “distance” between the desired distribution(which is given by
the samples) and the proposed distribution.

A good dissimilarity measure between two discrete distributionsP andQ is the
Kullback-Leibler Divergence:

KL(Q, P ) = −
∑

x

Q(x) log(P (x)/Q(x))

in our case:

L(W ) = −
∑

i

yi log(P (C1|Xi)) + (1− yi) log(1− P (C1|Xi))

whereyi is 1 if samplXi is of class 1, and 0 if it is of class 2.
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Estimating a Logistic Regression

Logistic regression objective function:

L(W ) = −
∑

i

yi log(P (C1|Xi)) + (1− yi) log(1− P (C1|Xi))

whereyi is 1 if samplXi is of class 1, and 0 if it is of class 2.

We can minimizeL(W ) by gradient descent:

W ←W − η
∂L(W )

∂W

with
∂L(W )

∂W
=

∑
i

(yi − σ(W ′Xi))Xi

This looks a lot like the Perceptron learning rule

Y. LeCun: Machine Learning and Pattern Recognition – p. 23/23


	Review of Probability and Statistics: Definitions
	Expectations
	Joint Probability
	Conditional Probability
	Conditional Independence
	Special Distributions: Exponential Family
	Special Distributions: Gaussian
	Special Distributions: Multivariate Gaussian
	Bayes' Rules
	More General Forms of Bayes' Rules
	Probabilistic Models: Bayes Decision Theory
	Minimum Bayes Error Rate
	Generative Classifiers, Flawed?
	Discriminative Classifiers
	Naive Bayes Classifier
	Naive Bayes Classifier
	Naive Bayes Classifier
	Estimating Probabilities
	Estimating Probabilities
	Probabilistic Linear Classification: Logistic Regression
	Estimating a Logistic Regression
	Estimating a Logistic Regression

